These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 28327730)
1. Tough, rapid-recovery composite hydrogels fabricated via synergistic core-shell microgel covalent bonding and Fe Liang X; Deng Y; Pei X; Zhai K; Xu K; Tan Y; Gong X; Wang P Soft Matter; 2017 Apr; 13(14):2654-2662. PubMed ID: 28327730 [TBL] [Abstract][Full Text] [Related]
2. Dual Physically Cross-Linked Nanocomposite Hydrogels Reinforced by Tunicate Cellulose Nanocrystals with High Toughness and Good Self-Recoverability. Zhang T; Zuo T; Hu D; Chang C ACS Appl Mater Interfaces; 2017 Jul; 9(28):24230-24237. PubMed ID: 28650140 [TBL] [Abstract][Full Text] [Related]
3. Self-healable, super tough graphene oxide-poly(acrylic acid) nanocomposite hydrogels facilitated by dual cross-linking effects through dynamic ionic interactions. Zhong M; Liu YT; Xie XM J Mater Chem B; 2015 May; 3(19):4001-4008. PubMed ID: 32262621 [TBL] [Abstract][Full Text] [Related]
4. Dually cross-linked single network poly(acrylic acid) hydrogels with superior mechanical properties and water absorbency. Zhong M; Liu YT; Liu XY; Shi FK; Zhang LQ; Zhu MF; Xie XM Soft Matter; 2016 Jun; 12(24):5420-8. PubMed ID: 27230478 [TBL] [Abstract][Full Text] [Related]
5. A novel multi-responsive polyampholyte composite hydrogel with excellent mechanical strength and rapid shrinking rate. Xu K; Tan Y; Chen Q; An H; Li W; Dong L; Wang P J Colloid Interface Sci; 2010 May; 345(2):360-8. PubMed ID: 20152987 [TBL] [Abstract][Full Text] [Related]
6. High-Strength, Tough, and Self-Healing Nanocomposite Physical Hydrogels Based on the Synergistic Effects of Dynamic Hydrogen Bond and Dual Coordination Bonds. Shao C; Chang H; Wang M; Xu F; Yang J ACS Appl Mater Interfaces; 2017 Aug; 9(34):28305-28318. PubMed ID: 28771308 [TBL] [Abstract][Full Text] [Related]
7. Ultrastiff, Tough, and Healable Ionic-Hydrogen Bond Cross-Linked Hydrogels and Their Uses as Building Blocks To Construct Complex Hydrogel Structures. Liang Y; Xue J; Du B; Nie J ACS Appl Mater Interfaces; 2019 Feb; 11(5):5441-5454. PubMed ID: 30624049 [TBL] [Abstract][Full Text] [Related]
8. Integrated Functional High-Strength Hydrogels with Metal-Coordination Complexes and H-Bonding Dual Physically Cross-linked Networks. Li X; Li R; Liu Z; Gao X; Long S; Zhang G Macromol Rapid Commun; 2018 Dec; 39(23):e1800400. PubMed ID: 30101504 [TBL] [Abstract][Full Text] [Related]
9. Tough hybrid microgel-reinforced hydrogels dependent on the size and modulus of the microgels. Li C; Zhou X; Zhu L; Xu Z; Tan P; Wang H; Chen G; Zhou X Soft Matter; 2021 Feb; 17(6):1566-1573. PubMed ID: 33346314 [TBL] [Abstract][Full Text] [Related]
10. Homogeneous and Real Super Tough Multi-Bond Network Hydrogels Created through a Controllable Metal Ion Permeation Strategy. Liu XY; Xu H; Zhang LQ; Zhong M; Xie XM ACS Appl Mater Interfaces; 2019 Nov; 11(45):42856-42864. PubMed ID: 31633324 [TBL] [Abstract][Full Text] [Related]
11. Ultrasensitive Wearable Soft Strain Sensors of Conductive, Self-healing, and Elastic Hydrogels with Synergistic "Soft and Hard" Hybrid Networks. Liu YJ; Cao WT; Ma MG; Wan P ACS Appl Mater Interfaces; 2017 Aug; 9(30):25559-25570. PubMed ID: 28696658 [TBL] [Abstract][Full Text] [Related]
12. Influence of the Degree of Swelling on the Stiffness and Toughness of Microgel-Reinforced Hydrogels. Kessler M; Yuan T; Kolinski JM; Amstad E Macromol Rapid Commun; 2023 Aug; 44(16):e2200864. PubMed ID: 36809684 [TBL] [Abstract][Full Text] [Related]
13. Self-Healing Gelatin Hydrogels Cross-Linked by Combining Multiple Hydrogen Bonding and Ionic Coordination. Zhang G; Lv L; Deng Y; Wang C Macromol Rapid Commun; 2017 Jun; 38(12):. PubMed ID: 28481407 [TBL] [Abstract][Full Text] [Related]
14. Highly tough, anti-fatigue and rapidly self-recoverable hydrogels reinforced with core-shell inorganic-organic hybrid latex particles. Xia S; Song S; Ren X; Gao G Soft Matter; 2017 Sep; 13(36):6059-6067. PubMed ID: 28776059 [TBL] [Abstract][Full Text] [Related]
15. Unconventional Tough Double-Network Hydrogels with Rapid Mechanical Recovery, Self-Healing, and Self-Gluing Properties. Jia H; Huang Z; Fei Z; Dyson PJ; Zheng Z; Wang X ACS Appl Mater Interfaces; 2016 Nov; 8(45):31339-31347. PubMed ID: 27782401 [TBL] [Abstract][Full Text] [Related]
16. Metal Ion Mediated Cellulose Nanofibrils Transient Network in Covalently Cross-linked Hydrogels: Mechanistic Insight into Morphology and Dynamics. Yang J; Xu F; Han CR Biomacromolecules; 2017 Mar; 18(3):1019-1028. PubMed ID: 28192670 [TBL] [Abstract][Full Text] [Related]
17. Tough and Resilient Hydrogels Enabled by a Multifunctional Initiating and Cross-Linking Agent. Cao Z; Yuan Z; Wu R; Wu H; Jin B; Zheng J; Wu J Gels; 2021 Oct; 7(4):. PubMed ID: 34698196 [TBL] [Abstract][Full Text] [Related]
18. High-Strength, Tough, Fatigue Resistant, and Self-Healing Hydrogel Based on Dual Physically Cross-Linked Network. Gong Z; Zhang G; Zeng X; Li J; Li G; Huang W; Sun R; Wong C ACS Appl Mater Interfaces; 2016 Sep; 8(36):24030-7. PubMed ID: 27548327 [TBL] [Abstract][Full Text] [Related]
19. Self-healable, tough and highly stretchable ionic nanocomposite physical hydrogels. Zhong M; Liu XY; Shi FK; Zhang LQ; Wang XP; Cheetham AG; Cui H; Xie XM Soft Matter; 2015 Jun; 11(21):4235-41. PubMed ID: 25892460 [TBL] [Abstract][Full Text] [Related]
20. Does the Size of Microgels Influence the Toughness of Microgel-Reinforced Hydrogels? Kessler M; Nassisi Q; Amstad E Macromol Rapid Commun; 2022 Aug; 43(15):e2200196. PubMed ID: 35467048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]