These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 28327750)

  • 1. Dynamic studies of the interaction of a pH responsive, amphiphilic polymer with a DOPC lipid membrane.
    Ramadurai S; Werner M; Slater NKH; Martin A; Baulin VA; Keyes TE
    Soft Matter; 2017 May; 13(20):3690-3700. PubMed ID: 28327750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular inversion-driven polymer insertion into model lipid bilayer membranes.
    Ramadurai S; Kohut A; Sarangi NK; Zholobko O; Baulin VA; Voronov A; Keyes TE
    J Colloid Interface Sci; 2019 Apr; 542():483-494. PubMed ID: 30772510
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effects of substituent grafting on the interaction of pH-responsive polymers with phospholipid monolayers.
    Zhang S; Nelson A; Coldrick Z; Chen R
    Langmuir; 2011 Jul; 27(13):8530-9. PubMed ID: 21657216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the passive permeability of antidepressants through pore-suspended lipid bilayer.
    Sarangi NK; Prabhakaran A; Roantree M; Keyes TE
    Colloids Surf B Biointerfaces; 2024 Feb; 234():113688. PubMed ID: 38128360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation and stabilization of pores in bilayer membranes by peptide-like amphiphilic polymers.
    Checkervarty A; Werner M; Sommer JU
    Soft Matter; 2018 Mar; 14(13):2526-2534. PubMed ID: 29537426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aqueous-filled polymer microcavity arrays: versatile & stable lipid bilayer platforms offering high lateral mobility to incorporated membrane proteins.
    Basit H; Gaul V; Maher S; Forster RJ; Keyes TE
    Analyst; 2015 May; 140(9):3012-8. PubMed ID: 25798456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microcavity-Supported Lipid Bilayers; Evaluation of Drug-Lipid Membrane Interactions by Electrochemical Impedance and Fluorescence Correlation Spectroscopy.
    Ramadurai S; Sarangi NK; Maher S; MacConnell N; Bond AM; McDaid D; Flynn D; Keyes TE
    Langmuir; 2019 Jun; 35(24):8095-8109. PubMed ID: 31120755
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multimodal Investigation into the Interaction of Quinacrine with Microcavity-Supported Lipid Bilayers.
    Sarangi NK; Prabhakaran A; Keyes TE
    Langmuir; 2022 May; 38(20):6411-6424. PubMed ID: 35561255
    [TBL] [Abstract][Full Text] [Related]  

  • 9. pH-Dependent aggregation and pH-independent cell membrane adhesion of monolayer-protected mixed charged gold nanoparticles.
    Shen Z; Baker W; Ye H; Li Y
    Nanoscale; 2019 Apr; 11(15):7371-7385. PubMed ID: 30938720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanisms of drug resistance reversal in Dox-resistant MCF-7 cells by pH-responsive amphiphilic polyphosphazene containing diisopropylamino side groups.
    Qiu L; Zheng C; Zhao Q
    Mol Pharm; 2012 May; 9(5):1109-17. PubMed ID: 22494535
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanoparticle-induced permeability of lipid membranes.
    Pogodin S; Werner M; Sommer JU; Baulin VA
    ACS Nano; 2012 Dec; 6(12):10555-61. PubMed ID: 23128273
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Translocation and induced permeability of random amphiphilic copolymers interacting with lipid bilayer membranes.
    Werner M; Sommer JU
    Biomacromolecules; 2015 Jan; 16(1):125-35. PubMed ID: 25539014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Diffusion of chlorin-p6 across phosphatidyl choline liposome bilayer probed by second harmonic generation.
    Saini RK; Dube A; Gupta PK; Das K
    J Phys Chem B; 2012 Apr; 116(14):4199-205. PubMed ID: 22414064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional group dependence of solute partitioning to various locations within a DOPC bilayer: a comparison of molecular dynamics simulations with experiment.
    Tejwani RW; Davis ME; Anderson BD; Stouch TR
    J Pharm Sci; 2011 Jun; 100(6):2136-46. PubMed ID: 21491439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the interaction of block copolymers with DMPC lipid bilayer using coarse-grained molecular dynamics simulations.
    Hezaveh S; Samanta S; De Nicola A; Milano G; Roccatano D
    J Phys Chem B; 2012 Dec; 116(49):14333-45. PubMed ID: 23137298
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Designing nanoparticle translocation through cell membranes by varying amphiphilic polymer coatings.
    Zhang L; Becton M; Wang X
    J Phys Chem B; 2015 Mar; 119(9):3786-94. PubMed ID: 25675048
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of the hydrophilic spacer length on the functionality of a mercury-supported tethered bilayer lipid membrane.
    Becucci L; Faragher RJ; Schwan A
    Bioelectrochemistry; 2015 Feb; 101():92-6. PubMed ID: 25180906
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micron dimensioned cavity array supported lipid bilayers for the electrochemical investigation of ionophore activity.
    Maher S; Basit H; Forster RJ; Keyes TE
    Bioelectrochemistry; 2016 Dec; 112():16-23. PubMed ID: 27420132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Permeation of the three aromatic dipeptides through lipid bilayers: Experimental and computational study.
    Lee BL; Kuczera K; Middaugh CR; Jas GS
    J Chem Phys; 2016 Jun; 144(24):245103. PubMed ID: 27369545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.