BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 28327954)

  • 1. Genome sequencing of the winged midge, Parochlus steinenii, from the Antarctic Peninsula.
    Kim S; Oh M; Jung W; Park J; Choi HG; Shin SC
    Gigascience; 2017 Mar; 6(3):1-8. PubMed ID: 28327954
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Complete mitochondrial genome of the Antarctic midge Parochlus steinenii (Diptera: Chironomidae).
    Kim S; Kim H; Shin SC
    Mitochondrial DNA A DNA Mapp Seq Anal; 2016 Sep; 27(5):3475-6. PubMed ID: 26642812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Compact genome of the Antarctic midge is likely an adaptation to an extreme environment.
    Kelley JL; Peyton JT; Fiston-Lavier AS; Teets NM; Yee MC; Johnston JS; Bustamante CD; Lee RE; Denlinger DL
    Nat Commun; 2014 Aug; 5():4611. PubMed ID: 25118180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanopore sequencing reads improve assembly and gene annotation of the Parochlus steinenii genome.
    Shin SC; Kim H; Lee JH; Kim HW; Park J; Choi BS; Lee SC; Kim JH; Lee H; Kim S
    Sci Rep; 2019 Mar; 9(1):5095. PubMed ID: 30911035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gene family expansions in Antarctic winged midge as a strategy for adaptation to cold environments.
    Kim H; Kim HW; Lee JH; Park J; Lee H; Kim S; Shin SC
    Sci Rep; 2022 Oct; 12(1):18263. PubMed ID: 36309574
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A polar insect's tale: Observations on the life cycle of Parochlus steinenii, the only winged midge native to Antarctica.
    Contador Mejias T; Gañan M; Rendoll-Cárcamo J; Maturana CS; Benítez HA; Kennedy J; Rozzi R; Convey P
    Ecology; 2023 Mar; 104(3):e3964. PubMed ID: 36565174
    [No Abstract]   [Full Text] [Related]  

  • 7. Records of
    Gañan M; Contador T; Rendoll J; Simoes F; Carolina Pérez ; Graham G; Castillo S; Kennedy J; Convey P
    Zookeys; 2021; 1011():63-71. PubMed ID: 33551650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing distribution shifts and ecophysiological characteristics of the only Antarctic winged midge under climate change scenarios.
    Contador T; Gañan M; Bizama G; Fuentes-Jaque G; Morales L; Rendoll J; Simoes F; Kennedy J; Rozzi R; Convey P
    Sci Rep; 2020 Jun; 10(1):9087. PubMed ID: 32493944
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Belgica antarctica (Diptera: Chironomidae): A natural model organism for extreme environments.
    Kozeretska I; Serga S; Kovalenko P; Gorobchyshyn V; Convey P
    Insect Sci; 2022 Feb; 29(1):2-20. PubMed ID: 33913258
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid cold-hardening increases the freezing tolerance of the Antarctic midge Belgica antarctica.
    Lee RE; Elnitsky MA; Rinehart JP; Hayward SA; Sandro LH; Denlinger DL
    J Exp Biol; 2006 Feb; 209(Pt 3):399-406. PubMed ID: 16424090
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slow dehydration promotes desiccation and freeze tolerance in the Antarctic midge Belgica antarctica.
    Hayward SA; Rinehart JP; Sandro LH; Lee RE; Denlinger DL
    J Exp Biol; 2007 Mar; 210(Pt 5):836-44. PubMed ID: 17297143
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Shared Features Underlying Compact Genomes and Extreme Habitat Use in Chironomid Midges.
    Nell LA; Weng YM; Phillips JS; Botsch JC; Book KR; Einarsson Á; Ives AR; Schoville SD
    Genome Biol Evol; 2024 May; 16(5):. PubMed ID: 38662498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chironomid midges (Diptera) provide insights into genome evolution in extreme environments.
    Shaikhutdinov N; Gusev O
    Curr Opin Insect Sci; 2022 Feb; 49():101-107. PubMed ID: 34990872
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aquaporins in the antarctic midge, an extremophile that relies on dehydration for cold survival.
    Goto SG; Lee RE; Denlinger DL
    Biol Bull; 2015 Aug; 229(1):47-57. PubMed ID: 26338869
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Expression of aquaporins in response to distinct dehydration stresses that confer stress tolerance in the Antarctic midge Belgica antarctica.
    Yoshida M; Lee RE; Denlinger DL; Goto SG
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jun; 256():110928. PubMed ID: 33647463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High resistance to oxidative damage in the Antarctic midge Belgica antarctica, and developmentally linked expression of genes encoding superoxide dismutase, catalase and heat shock proteins.
    Lopez-Martinez G; Elnitsky MA; Benoit JB; Lee RE; Denlinger DL
    Insect Biochem Mol Biol; 2008 Aug; 38(8):796-804. PubMed ID: 18625403
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The protective effect of rapid cold-hardening develops more quickly in frozen versus supercooled larvae of the Antarctic midge, Belgica antarctica.
    Kawarasaki Y; Teets NM; Denlinger DL; Lee RE
    J Exp Biol; 2013 Oct; 216(Pt 20):3937-45. PubMed ID: 23868837
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cryoprotective dehydration and the resistance to inoculative freezing in the Antarctic midge, Belgica antarctica.
    Elnitsky MA; Hayward SA; Rinehart JP; Denlinger DL; Lee RE
    J Exp Biol; 2008 Feb; 211(Pt 4):524-30. PubMed ID: 18245628
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osmoregulation and salinity tolerance in the Antarctic midge, Belgica antarctica: seawater exposure confers enhanced tolerance to freezing and dehydration.
    Elnitsky MA; Benoit JB; Lopez-Martinez G; Denlinger DL; Lee RE
    J Exp Biol; 2009 Sep; 212(17):2864-71. PubMed ID: 19684222
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The genome of the Antarctic-endemic copepod, Tigriopus kingsejongensis.
    Kang S; Ahn DH; Lee JH; Lee SG; Shin SC; Lee J; Min GS; Lee H; Kim HW; Kim S; Park H
    Gigascience; 2017 Jan; 6(1):1-9. PubMed ID: 28369352
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.