These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

98 related articles for article (PubMed ID: 28328099)

  • 1. An icosahedral virus as a fluorescent calibration standard: a method for counting protein molecules in cells by fluorescence microscopy.
    Murray JM
    J Microsc; 2017 Aug; 267(2):193-213. PubMed ID: 28328099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of stage interconversion in vitro and in vivo by construction of transgenic Toxoplasma gondii that stably express stage-specific fluorescent proteins.
    Zhang H; Zhang Y; Cao J; Zhou Y; Wang N; Zhou J
    Exp Parasitol; 2013 Jul; 134(3):275-80. PubMed ID: 23545429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Counting protein molecules using quantitative fluorescence microscopy.
    Coffman VC; Wu JQ
    Trends Biochem Sci; 2012 Nov; 37(11):499-506. PubMed ID: 22948030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fluorescent protein tagging in Toxoplasma gondii: identification of a novel inner membrane complex component conserved among Apicomplexa.
    Gubbels MJ; Wieffer M; Striepen B
    Mol Biochem Parasitol; 2004 Sep; 137(1):99-110. PubMed ID: 15279956
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Counting kinetochore protein numbers in budding yeast using genetically encoded fluorescent proteins.
    Joglekar AP; Salmon ED; Bloom KS
    Methods Cell Biol; 2008; 85():127-51. PubMed ID: 18155462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homo-FRET microscopy in living cells to measure monomer-dimer transition of GFP-tagged proteins.
    Gautier I; Tramier M; Durieux C; Coppey J; Pansu RB; Nicolas JC; Kemnitz K; Coppey-Moisan M
    Biophys J; 2001 Jun; 80(6):3000-8. PubMed ID: 11371472
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MRT letter: Nanoscopy of protein colocalization in living cells by STED and GSDIM.
    Lalkens B; Testa I; Willig KI; Hell SW
    Microsc Res Tech; 2012 Jan; 75(1):1-6. PubMed ID: 21678524
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Visualization of Toxoplasma gondii stage conversion by expression of stage-specific dual fluorescent proteins.
    Unno A; Suzuki K; Batanova T; Cha SY; Jang HK; Kitoh K; Takashima Y
    Parasitology; 2009 May; 136(6):579-88. PubMed ID: 19368740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Infecting larval arthropods with a chimeric, double subgenomic Sindbis virus vector to express genes of interest.
    Higgs S; Oray CT; Myles K; Olson KE; Beaty BJ
    Biotechniques; 1999 Nov; 27(5):908-11. PubMed ID: 10572634
    [No Abstract]   [Full Text] [Related]  

  • 10. Fluorescent Protein-Tagged Sindbis Virus E2 Glycoprotein Allows Single Particle Analysis of Virus Budding from Live Cells.
    Jose J; Tang J; Taylor AB; Baker TS; Kuhn RJ
    Viruses; 2015 Nov; 7(12):6182-99. PubMed ID: 26633461
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toxoplasma gondii grown in human cells uses GalNAc-containing glycosylphosphatidylinositol precursors to anchor surface antigens while the immunogenic Glc-GalNAc-containing precursors remain free at the parasite cell surface.
    Azzouz N; Shams-Eldin H; Niehus S; Debierre-Grockiego F; Bieker U; Schmidt J; Mercier C; Delauw MF; Dubremetz JF; Smith TK; Schwarz RT
    Int J Biochem Cell Biol; 2006; 38(11):1914-25. PubMed ID: 16822699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Standardization of fluorescence measurements: criteria for the choice of suitable standards and approaches to fit-for-purpose calibration tools.
    Resch-Genger U; Hoffmann K; Hoffmann A
    Ann N Y Acad Sci; 2008; 1130():35-43. PubMed ID: 18596329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fluorescence imaging using a fluorescent protein with a large Stokes shift.
    Kogure T; Kawano H; Abe Y; Miyawaki A
    Methods; 2008 Jul; 45(3):223-6. PubMed ID: 18586106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Uniform total internal reflection fluorescence illumination enables live cell fluorescence resonance energy transfer microscopy.
    Lin J; Hoppe AD
    Microsc Microanal; 2013 Apr; 19(2):350-9. PubMed ID: 23472941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An update on molecular counting in fluorescence microscopy.
    Hummert J; Tashev SA; Herten DP
    Int J Biochem Cell Biol; 2021 Jun; 135():105978. PubMed ID: 33865985
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nuclear pores as versatile reference standards for quantitative superresolution microscopy.
    Thevathasan JV; Kahnwald M; Cieśliński K; Hoess P; Peneti SK; Reitberger M; Heid D; Kasuba KC; Hoerner SJ; Li Y; Wu YL; Mund M; Matti U; Pereira PM; Henriques R; Nijmeijer B; Kueblbeck M; Sabinina VJ; Ellenberg J; Ries J
    Nat Methods; 2019 Oct; 16(10):1045-1053. PubMed ID: 31562488
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fluorescent protein applications in plants.
    Berg RH; Beachy RN
    Methods Cell Biol; 2008; 85():153-77. PubMed ID: 18155463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Determining absolute protein numbers by quantitative fluorescence microscopy.
    Verdaasdonk JS; Lawrimore J; Bloom K
    Methods Cell Biol; 2014; 123():347-65. PubMed ID: 24974037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transfection of genetically encoded photoswitchable probes for STORM imaging.
    Bates M; Jones SA; Zhuang X
    Cold Spring Harb Protoc; 2013 Jun; 2013(6):537-9. PubMed ID: 23734026
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of new fluorescent protein fragments for bimolecular fluorescence complementation analysis under physiological conditions.
    Shyu YJ; Liu H; Deng X; Hu CD
    Biotechniques; 2006 Jan; 40(1):61-6. PubMed ID: 16454041
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.