These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 28328167)

  • 1. Silicene: A Promising Anode for Lithium-Ion Batteries.
    Zhuang J; Xu X; Peleckis G; Hao W; Dou SX; Du Y
    Adv Mater; 2017 Dec; 29(48):. PubMed ID: 28328167
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Ab Initio Study of Lithization of Two-Dimensional Silicon-Carbon Anode Material for Lithium-Ion Batteries.
    Galashev A; Vorob'ev A
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical prediction of silicene as a new candidate for the anode of lithium-ion batteries.
    Seyed-Talebi SM; Kazeminezhad I; Beheshtian J
    Phys Chem Chem Phys; 2015 Nov; 17(44):29689-96. PubMed ID: 26477401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stabilization of two-dimensional penta-silicene for flexible lithium-ion battery anodes via surface chemistry reconfiguration.
    Wu D; Wang S; Zhang S; Liu Y; Ding Y; Yang B; Chen H
    Phys Chem Chem Phys; 2019 Jan; 21(3):1029-1037. PubMed ID: 30311925
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adsorption of Li on single-layer silicene for anodes of Li-ion batteries.
    Xu S; Fan X; Liu J; Singh DJ; Jiang Q; Zheng W
    Phys Chem Chem Phys; 2018 Mar; 20(13):8887-8896. PubMed ID: 29547213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer Test of a Modified Silicene/Graphite Anode for Lithium-Ion Batteries.
    Galashev AY; Ivanichkina KA; Katin KP; Maslov MM
    ACS Omega; 2020 Jun; 5(22):13207-13218. PubMed ID: 32548507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of silicene and boronene as a potential anode material for high-performance lithium-ion batteries: Insights from first principles.
    Ren HL; Su Y; Zhao S; Li CW; Wang XM; Li BH; Zhang BW
    Heliyon; 2024 Sep; 10(17):e37008. PubMed ID: 39281565
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Modeling of Doped 2D Anode Materials for Lithium-Ion Batteries.
    Galashev A
    Materials (Basel); 2023 Jan; 16(2):. PubMed ID: 36676441
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Silicene/boron nitride heterostructure for the design of highly efficient anode materials in lithium-ion battery.
    Wang T; Zhang S; Yin L; Li C; Xia C; An Y; Wei S
    J Phys Condens Matter; 2020 May; 32(35):. PubMed ID: 32325446
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Silicene Flowers: A Dual Stabilized Silicon Building Block for High-Performance Lithium Battery Anodes.
    Zhang X; Qiu X; Kong D; Zhou L; Li Z; Li X; Zhi L
    ACS Nano; 2017 Jul; 11(7):7476-7484. PubMed ID: 28692250
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hollow-structure engineering of a silicon-carbon anode for ultra-stable lithium-ion batteries.
    Liu H; Chen Y; Jiang B; Zhao Y; Guo X; Ma T
    Dalton Trans; 2020 May; 49(17):5669-5676. PubMed ID: 32292976
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Few-Layer Silicene Nanosheets with Superior Lithium-Storage Properties.
    Liu J; Yang Y; Lyu P; Nachtigall P; Xu Y
    Adv Mater; 2018 Jun; 30(26):e1800838. PubMed ID: 29733539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational investigation of a promising Si-Cu anode material.
    Galashev AY; Ivanichkina KA
    Phys Chem Chem Phys; 2019 Jun; 21(23):12310-12320. PubMed ID: 31139778
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facile Synthesis of Antimony Tungstate Nanosheets as Anodes for Lithium-Ion Batteries.
    Liu Y; Wang Y; Wang F; Lei Z; Zhang W; Pan K; Liu J; Chen M; Wang G; Ren F; Wei S
    Nanomaterials (Basel); 2019 Nov; 9(12):. PubMed ID: 31775358
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A new high-capacity and safe energy storage system: lithium-ion sulfur batteries.
    Liang X; Yun J; Wang Y; Xiang H; Sun Y; Feng Y; Yu Y
    Nanoscale; 2019 Nov; 11(41):19140-19157. PubMed ID: 31595921
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanostructured Si-Based Anodes for Lithium-Ion Batteries.
    Zhu X; Yang D; Li J; Su F
    J Nanosci Nanotechnol; 2015 Jan; 15(1):15-30. PubMed ID: 26328302
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Silicene, silicene derivatives, and their device applications.
    Molle A; Grazianetti C; Tao L; Taneja D; Alam MH; Akinwande D
    Chem Soc Rev; 2018 Aug; 47(16):6370-6387. PubMed ID: 30065980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silicon oxides: a promising family of anode materials for lithium-ion batteries.
    Liu Z; Yu Q; Zhao Y; He R; Xu M; Feng S; Li S; Zhou L; Mai L
    Chem Soc Rev; 2019 Jan; 48(1):285-309. PubMed ID: 30457132
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metallic borophene polytypes as lightweight anode materials for non-lithium-ion batteries.
    Xiang P; Chen X; Zhang W; Li J; Xiao B; Li L; Deng K
    Phys Chem Chem Phys; 2017 Sep; 19(36):24945-24954. PubMed ID: 28875190
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.