These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 28328500)

  • 1. The Role of Haptic Feedback in Robotic-Assisted Retinal Microsurgery Systems: A Systematic Review.
    Griffin JA; Zhu W; Nam CS
    IEEE Trans Haptics; 2017; 10(1):94-105. PubMed ID: 28328500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A robotic microsurgical forceps for transoral laser microsurgery.
    Chauhan M; Deshpande N; Pacchierotti C; Meli L; Prattichizzo D; Caldwell DG; Mattos LS
    Int J Comput Assist Radiol Surg; 2019 Feb; 14(2):321-333. PubMed ID: 30465304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toward robotically assisted membrane peeling with 3-DOF distal force sensing in retinal microsurgery.
    He X; Gehlbach P; Handa J; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6859-63. PubMed ID: 25571572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cooperative robot assistant for retinal microsurgery.
    Fleming I; Balicki M; Koo J; Iordachita I; Mitchell B; Handa J; Hager G; Taylor R
    Med Image Comput Comput Assist Interv; 2008; 11(Pt 2):543-50. PubMed ID: 18982647
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Haptic interface for robot-assisted ophthalmic surgery.
    Barthel A; Trematerra D; Nasseri MA; Zapp D; Lohmann CP; Knoll A; Maier M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug; 2015():4906-9. PubMed ID: 26737392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Lightweight and Affordable Wearable Haptic Controller for Robot-Assisted Microsurgery.
    Guo X; McFall F; Jiang P; Liu J; Lepora N; Zhang D
    Sensors (Basel); 2024 Apr; 24(9):. PubMed ID: 38732782
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preliminary study of an RNN-based active interventional robotic system (AIRS) in retinal microsurgery.
    He C; Patel N; Ebrahimi A; Kobilarov M; Iordachita I
    Int J Comput Assist Radiol Surg; 2019 Jun; 14(6):945-954. PubMed ID: 30887423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Features of haptic and tactile feedback in TORS-a comparison of available surgical systems.
    Friedrich DT; Dürselen L; Mayer B; Hacker S; Schall F; Hahn J; Hoffmann TK; Schuler PJ; Greve J
    J Robot Surg; 2018 Mar; 12(1):103-108. PubMed ID: 28470408
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design of a haptic device with grasp and push-pull force feedback for a master-slave surgical robot.
    Hu Z; Yoon CH; Park SB; Jo YH
    Int J Comput Assist Radiol Surg; 2016 Jul; 11(7):1361-9. PubMed ID: 26646414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FBG-based sensorized light pipe for robotic intraocular illumination facilitates bimanual retinal microsurgery.
    Horise Y; He X; Gehlbach P; Taylor R; Iordachita I
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():13-6. PubMed ID: 26736189
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Force feedback in a piezoelectric linear actuator for neurosurgery.
    De Lorenzo D; De Momi E; Dyagilev I; Manganelli R; Formaglio A; Prattichizzo D; Shoham M; Ferrigno G
    Int J Med Robot; 2011 Sep; 7(3):268-75. PubMed ID: 21538769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Image-Guided Mastoidectomy with a Cooperatively Controlled ENT Microsurgery Robot.
    Razavi CR; Wilkening PR; Yin R; Barber SR; Taylor RH; Carey JP; Creighton FX
    Otolaryngol Head Neck Surg; 2019 Nov; 161(5):852-855. PubMed ID: 31331246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Handheld-automated microsurgical instrumentation for intraocular laser surgery.
    Yang S; Lobes LA; Martel JN; Riviere CN
    Lasers Surg Med; 2015 Oct; 47(8):658-68. PubMed ID: 26287813
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A hand-held device with 3-DOF haptic feedback mechanism for microsurgery.
    Wang Z; Wang S; Zuo S
    Int J Med Robot; 2019 Oct; 15(5):e2025. PubMed ID: 31266093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prevalence of haptic feedback in robot-mediated surgery: a systematic review of literature.
    Amirabdollahian F; Livatino S; Vahedi B; Gudipati R; Sheen P; Gawrie-Mohan S; Vasdev N
    J Robot Surg; 2018 Mar; 12(1):11-25. PubMed ID: 29196867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Experimental evaluation of magnified haptic feedback for robot-assisted needle insertion and palpation.
    Meli L; Pacchierotti C; Prattichizzo D
    Int J Med Robot; 2017 Dec; 13(4):. PubMed ID: 28218455
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Data analytics interrogates robotic surgical performance using a microsurgery-specific haptic device.
    Baghdadi A; Hoshyarmanesh H; de Lotbiniere-Bassett MP; Choi SK; Lama S; Sutherland GR
    Expert Rev Med Devices; 2020 Jul; 17(7):721-730. PubMed ID: 32536224
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robotic microlaryngeal phonosurgery: Testing of a "steady-hand" microsurgery platform.
    Akst LM; Olds KC; Balicki M; Chalasani P; Taylor RH
    Laryngoscope; 2018 Jan; 128(1):126-132. PubMed ID: 28498632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of haptic devices and end-users: Novel performance metrics in tele-robotic microsurgery.
    Hoshyarmanesh H; Zareinia K; Lama S; Durante B; Sutherland GR
    Int J Med Robot; 2020 Aug; 16(4):e2101. PubMed ID: 32181954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hybrid position/force control of an active handheld micromanipulator for membrane peeling.
    Wells TS; Yang S; MacLachlan RA; Lobes LA; Martel JN; Riviere CN
    Int J Med Robot; 2016 Mar; 12(1):85-95. PubMed ID: 25962836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.