These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 28328500)

  • 21. Robot-assisted microsurgical forceps with haptic feedback for transoral laser microsurgery.
    Deshpande N; Chauhan M; Pacchierotti C; Prattichizzo D; Caldwell DG; Mattos LS
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():5156-5159. PubMed ID: 28269426
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Pneumatically driven surgical forceps displaying a magnified grasping torque.
    Iwai T; Kanno T; Miyazaki T; Haraguchi D; Kawashima K
    Int J Med Robot; 2020 Apr; 16(2):e2051. PubMed ID: 31710158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Haptic Feedback for Control and Active Constraints in Contactless Laser Surgery: Concept, Implementation, and Evaluation.
    Olivieri E; Barresi G; Caldwell DG; Mattos LS; Olivieri E; Barresi G; Caldwell DG; Mattos LS; Olivieri E; Caldwell DG; Barresi G; Mattos LS
    IEEE Trans Haptics; 2018; 11(2):241-254. PubMed ID: 29911981
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Master-slave robotic platform and its feasibility study for micro-neurosurgery.
    Mitsuishi M; Morita A; Sugita N; Sora S; Mochizuki R; Tanimoto K; Baek YM; Takahashi H; Harada K
    Int J Med Robot; 2013 Jun; 9(2):180-9. PubMed ID: 22588785
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Haptic feedback in OP:Sense - augmented reality in telemanipulated robotic surgery.
    Beyl T; Nicolai P; Mönnich H; Raczkowksy J; Wörn H
    Stud Health Technol Inform; 2012; 173():58-63. PubMed ID: 22356957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of visual and direct force feedback in robotics-assisted mitral valve annuloplasty.
    Currie ME; Talasaz A; Rayman R; Chu MWA; Kiaii B; Peters T; Trejos AL; Patel R
    Int J Med Robot; 2017 Sep; 13(3):. PubMed ID: 27862833
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An experimental study about haptic feedback in robotic surgery: may visual feedback substitute tactile feedback?
    Meccariello G; Faedi F; AlGhamdi S; Montevecchi F; Firinu E; Zanotti C; Cavaliere D; Gunelli R; Taurchini M; Amadori A; Vicini C
    J Robot Surg; 2016 Mar; 10(1):57-61. PubMed ID: 26559538
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Micro-force sensing in robot assisted membrane peeling for vitreoretinal surgery.
    Balicki M; Uneri A; Iordachita I; Handa J; Gehlbach P; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):303-10. PubMed ID: 20879413
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A haptic pedal for surgery assistance.
    Díaz I; Gil JJ; Louredo M
    Comput Methods Programs Biomed; 2014 Sep; 116(2):97-104. PubMed ID: 24210869
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Input and output for surgical simulation: devices to measure tissue properties in vivo and a haptic interface for laparoscopy simulators.
    Ottensmeyer MP; Ben-Ur E; Salisbury JK
    Stud Health Technol Inform; 2000; 70():236-42. PubMed ID: 10977548
    [TBL] [Abstract][Full Text] [Related]  

  • 31. EyeSLAM: Real-time simultaneous localization and mapping of retinal vessels during intraocular microsurgery.
    Braun D; Yang S; Martel JN; Riviere CN; Becker BC
    Int J Med Robot; 2018 Feb; 14(1):. PubMed ID: 28719002
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New era of robotic surgical systems.
    Gosrisirikul C; Don Chang K; Raheem AA; Rha KH
    Asian J Endosc Surg; 2018 Nov; 11(4):291-299. PubMed ID: 30306719
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A GPU-implemented physics-based haptic simulator of tooth drilling.
    Razavi M; Talebi HA; Zareinejad M; Dehghan MR
    Int J Med Robot; 2015 Dec; 11(4):476-85. PubMed ID: 25582358
    [TBL] [Abstract][Full Text] [Related]  

  • 34. In-Human Robot-Assisted Retinal Vein Cannulation, A World First.
    Gijbels A; Smits J; Schoevaerdts L; Willekens K; Vander Poorten EB; Stalmans P; Reynaerts D
    Ann Biomed Eng; 2018 Oct; 46(10):1676-1685. PubMed ID: 29797141
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Adaptive multispectral illumination for retinal microsurgery.
    Sznitman R; Rother D; Handa J; Gehlbach P; Hager GD; Taylor R
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 3):465-72. PubMed ID: 20879433
    [TBL] [Abstract][Full Text] [Related]  

  • 36. EyeSAM: graph-based localization and mapping of retinal vasculature during intraocular microsurgery.
    Mukherjee S; Kaess M; Martel JN; Riviere CN
    Int J Comput Assist Radiol Surg; 2019 May; 14(5):819-828. PubMed ID: 30790173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Real-time localization of articulated surgical instruments in retinal microsurgery.
    Rieke N; Tan DJ; Amat di San Filippo C; Tombari F; Alsheakhali M; Belagiannis V; Eslami A; Navab N
    Med Image Anal; 2016 Dec; 34():82-100. PubMed ID: 27237604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Instrument tracking via online learning in retinal microsurgery.
    Li Y; Chen C; Huang X; Huang J
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):464-71. PubMed ID: 25333151
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Design and control of a robotic system for assistive laser phonomicrosurgery.
    Mattos LS; Caldwell DG; Dellepiane M; Grant E
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():5411-5. PubMed ID: 21096272
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Robotics in Neurosurgery: Evolution, Current Challenges, and Compromises.
    Doulgeris JJ; Gonzalez-Blohm SA; Filis AK; Shea TM; Aghayev K; Vrionis FD
    Cancer Control; 2015 Jul; 22(3):352-9. PubMed ID: 26351892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.