These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 28328510)

  • 1. Investigation and Modeling of Capacitive Human Body Communication.
    Zhu XQ; Guo YX; Wu W
    IEEE Trans Biomed Circuits Syst; 2017 Apr; 11(2):474-482. PubMed ID: 28328510
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Equivalent Circuit Model Viewed From Receiver Side in Human Body Communication.
    Nishida Y; Sasaki K; Yamamoto K; Muramatsu D; Koshiji F
    IEEE Trans Biomed Circuits Syst; 2019 Aug; 13(4):746-755. PubMed ID: 31135370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel Modeling of Miniaturized Battery-Powered Capacitive Human Body Communication Systems.
    Park J; Garudadri H; Mercier PP
    IEEE Trans Biomed Eng; 2017 Feb; 64(2):452-462. PubMed ID: 27164566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation on Ground Electrodes of Capacitive Coupling Human Body Communication.
    Mao J; Yang H; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Aug; 11(4):910-919. PubMed ID: 28541910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. New equivalent-electrical circuit model and a practical measurement method for human body impedance.
    Chinen K; Kinjo I; Zamami A; Irei K; Nagayama K
    Biomed Mater Eng; 2015; 26 Suppl 1():S779-86. PubMed ID: 26406074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bio-Physical Modeling of Galvanic Human Body Communication in Electro-Quasistatic Regime.
    Modak N; Nath M; Chatterjee B; Maity S; Sen S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3717-3727. PubMed ID: 35594211
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design of a floating-ground-electrode circuit for measuring attenuation of the human body channel.
    Zhang Y; Gao Z; Liu W; Gao Y; Du M
    Technol Health Care; 2020; 28(3):275-281. PubMed ID: 31594265
    [TBL] [Abstract][Full Text] [Related]  

  • 8. On the Safety of Human Body Communication.
    Maity S; Nath M; Bhattacharya G; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2020 Dec; 67(12):3392-3402. PubMed ID: 32305887
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Energy Efficient Technique Using Electric Active Shielding for Capacitive Coupling Intra-Body Communication.
    Ma C; Huang Z; Wang Z; Zhou L; Li Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885546
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Performance of human body communication-based wearable ECG with capacitive coupling electrodes.
    Sakuma J; Anzai D; Wang J
    Healthc Technol Lett; 2016 Sep; 3(3):222-225. PubMed ID: 27733931
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparable Investigation of Characteristics for Implant Intra-Body Communication Based on Galvanic and Capacitive Coupling.
    Li M; Song Y; Hou Y; Li N; Jiang Y; Sulaman M; Hao Q
    IEEE Trans Biomed Circuits Syst; 2019 Dec; 13(6):1747-1758. PubMed ID: 31514153
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Novel Field-Circuit FEM Modeling and Channel Gain Estimation for Galvanic Coupling Real IBC Measurements.
    Gao YM; Wu ZM; Pun SH; Mak PU; Vai MI; Du M
    Sensors (Basel); 2016 Apr; 16(4):. PubMed ID: 27049386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bio-Physical Modeling, Characterization, and Optimization of Electro-Quasistatic Human Body Communication.
    Maity S; He M; Nath M; Das D; Chatterjee B; Sen S
    IEEE Trans Biomed Eng; 2019 Jun; 66(6):1791-1802. PubMed ID: 30403618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Channel Loss in Contactless Human Body Communication.
    Mao J; Yang H; Lian Y; Zhao B
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3762-3765. PubMed ID: 30441185
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding the Role of Magnetic and Magneto-Quasistatic Fields in Human Body Communication.
    Nath MN; Ulvog AK; Weigand S; Sen S
    IEEE Trans Biomed Eng; 2022 Dec; 69(12):3635-3644. PubMed ID: 35560087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Adaptive Capacitive Compensation Technique for Body Channel Communication.
    Mao J; Yang H; Lian Y; Zhao B
    IEEE Trans Biomed Circuits Syst; 2017 Oct; 11(5):1001-1012. PubMed ID: 28644812
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using compound electrodes in electrical impedance tomography.
    Hua P; Woo EJ; Webster JG; Tompkins WJ
    IEEE Trans Biomed Eng; 1993 Jan; 40(1):29-34. PubMed ID: 8468073
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on transmission characteristics and specific absorption rate using impedance-matched electrodes for various human body communication.
    Machida Y; Yamamoto T; Koshiji K
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():1883-6. PubMed ID: 24110079
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel high input impedance front-end for capacitive biopotential measurement.
    Wu R; Tang Y; Li Z; Zhang L; Yan F
    Med Biol Eng Comput; 2018 Aug; 56(8):1343-1355. PubMed ID: 29308545
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impedance measurement system for determination of capacitive electrode coupling.
    Eilebrecht B; Willkomm J; Pohl A; Wartzek T; Leonhardt S
    IEEE Trans Biomed Circuits Syst; 2013 Oct; 7(5):682-9. PubMed ID: 24232629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.