These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
207 related articles for article (PubMed ID: 28328973)
21. Tissue metabolic responses to salt stress in wild and cultivated barley. Wu D; Cai S; Chen M; Ye L; Chen Z; Zhang H; Dai F; Wu F; Zhang G PLoS One; 2013; 8(1):e55431. PubMed ID: 23383190 [TBL] [Abstract][Full Text] [Related]
22. External potassium (K(+)) application improves salinity tolerance by promoting Na(+)-exclusion, K(+)-accumulation and osmotic adjustment in contrasting peanut cultivars. Chakraborty K; Bhaduri D; Meena HN; Kalariya K Plant Physiol Biochem; 2016 Jun; 103():143-53. PubMed ID: 26994338 [TBL] [Abstract][Full Text] [Related]
23. Overexpression of a novel soybean gene modulating Na+ and K+ transport enhances salt tolerance in transgenic tobacco plants. Chen H; He H; Yu D Physiol Plant; 2011 Jan; 141(1):11-8. PubMed ID: 20875056 [TBL] [Abstract][Full Text] [Related]
24. Differences in physiological and biochemical characteristics in response to single and combined drought and salinity stresses between wheat genotypes differing in salt tolerance. Dugasa MT; Cao F; Ibrahim W; Wu F Physiol Plant; 2019 Feb; 165(2):134-143. PubMed ID: 29635753 [TBL] [Abstract][Full Text] [Related]
25. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Darko E; Khalil R; Dobi Z; Kovács V; Szalai G; Janda T; Molnár I Sci Rep; 2020 Dec; 10(1):22327. PubMed ID: 33339903 [TBL] [Abstract][Full Text] [Related]
26. Integrated physiological and transcriptional dissection reveals the core genes involving nutrient transport and osmoregulatory substance biosynthesis in allohexaploid wheat seedlings under salt stress. Chen JF; Liu Y; Zhang TY; Zhou ZF; Huang JY; Zhou T; Hua YP BMC Plant Biol; 2022 Oct; 22(1):502. PubMed ID: 36289462 [TBL] [Abstract][Full Text] [Related]
27. Root vacuolar Na Wu H; Shabala L; Zhou M; Su N; Wu Q; Ul-Haq T; Zhu J; Mancuso S; Azzarello E; Shabala S Plant J; 2019 Oct; 100(1):55-67. PubMed ID: 31148333 [TBL] [Abstract][Full Text] [Related]
28. Photosynthetic capacity is related to the cellular and subcellular partitioning of Na+, K+ and Cl- in salt-affected barley and durum wheat. James RA; Munns R; von Caemmerer S; Trejo C; Miller C; Condon TA Plant Cell Environ; 2006 Dec; 29(12):2185-97. PubMed ID: 17081251 [TBL] [Abstract][Full Text] [Related]
29. Wheat Wang Y; Zhang Y; An Y; Wu J; He S; Sun L; Hao F Int J Mol Sci; 2022 Feb; 23(4):. PubMed ID: 35216200 [TBL] [Abstract][Full Text] [Related]
30. The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. Yousefirad S; Soltanloo H; Ramezanpour SS; Zaynali Nezhad K; Shariati V PLoS One; 2020; 15(3):e0229513. PubMed ID: 32187229 [TBL] [Abstract][Full Text] [Related]
31. Discerning morpho-anatomical, physiological and molecular multiformity in cultivated and wild genotypes of lentil with reconciliation to salinity stress. Singh D; Singh CK; Kumari S; Singh Tomar RS; Karwa S; Singh R; Singh RB; Sarkar SK; Pal M PLoS One; 2017; 12(5):e0177465. PubMed ID: 28542267 [TBL] [Abstract][Full Text] [Related]
32. Expression of wheat Na(+)/H(+) antiporter TNHXS1 and H(+)- pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Gouiaa S; Khoudi H; Leidi EO; Pardo JM; Masmoudi K Plant Mol Biol; 2012 May; 79(1-2):137-55. PubMed ID: 22415161 [TBL] [Abstract][Full Text] [Related]
33. Chromosomal assignment and deletion mapping of barley EST markers. Nasuda S; Kikkawa Y; Ashida T; Islam AK; Sato K; Endo TR Genes Genet Syst; 2005 Oct; 80(5):357-66. PubMed ID: 16394587 [TBL] [Abstract][Full Text] [Related]
34. Oxygen deficiency and salinity affect cell-specific ion concentrations in adventitious roots of barley (Hordeum vulgare). Kotula L; Clode PL; Striker GG; Pedersen O; Läuchli A; Shabala S; Colmer TD New Phytol; 2015 Dec; 208(4):1114-25. PubMed ID: 26094736 [TBL] [Abstract][Full Text] [Related]
35. Evolution of physiological responses to salt stress in hexaploid wheat. Yang C; Zhao L; Zhang H; Yang Z; Wang H; Wen S; Zhang C; Rustgi S; von Wettstein D; Liu B Proc Natl Acad Sci U S A; 2014 Aug; 111(32):11882-7. PubMed ID: 25074914 [TBL] [Abstract][Full Text] [Related]
36. Supportive role of the Na Gao LW; Yang SL; Wei SW; Huang DF; Zhang YD Plant Mol Biol; 2020 Jul; 103(4-5):561-580. PubMed ID: 32405802 [TBL] [Abstract][Full Text] [Related]
38. Genetic engineering of the biosynthesis of glycinebetaine leads to alleviate salt-induced potassium efflux and enhances salt tolerance in tomato plants. Wei D; Zhang W; Wang C; Meng Q; Li G; Chen THH; Yang X Plant Sci; 2017 Apr; 257():74-83. PubMed ID: 28224920 [TBL] [Abstract][Full Text] [Related]
39. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica. Alikhani M; Khatabi B; Sepehri M; Nekouei MK; Mardi M; Salekdeh GH Mol Biosyst; 2013 Jun; 9(6):1498-510. PubMed ID: 23545942 [TBL] [Abstract][Full Text] [Related]
40. Lipoic acid mitigates oxidative stress and recovers metabolic distortions in salt-stressed wheat seedlings by modulating ion homeostasis, the osmo-regulator level and antioxidant system. Gorcek Z; Erdal S J Sci Food Agric; 2015 Nov; 95(14):2811-7. PubMed ID: 25427940 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]