These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 28329105)

  • 21. Applications of Three-Dimensional Printing in Surgery.
    Li C; Cheung TF; Fan VC; Sin KM; Wong CW; Leung GK
    Surg Innov; 2017 Feb; 24(1):82-88. PubMed ID: 27913755
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cardiac 3D printing for better understanding of congenital heart disease.
    Hadeed K; Acar P; Dulac Y; Cuttone F; Alacoque X; Karsenty C
    Arch Cardiovasc Dis; 2018 Jan; 111(1):1-4. PubMed ID: 29158165
    [No Abstract]   [Full Text] [Related]  

  • 23. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals-Cross-Sectional Multispecialty Review.
    Meyer-Szary J; Luis MS; Mikulski S; Patel A; Schulz F; Tretiakow D; Fercho J; Jaguszewska K; Frankiewicz M; Pawłowska E; Targoński R; Szarpak Ł; Dądela K; Sabiniewicz R; Kwiatkowska J
    Int J Environ Res Public Health; 2022 Mar; 19(6):. PubMed ID: 35329016
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional printing in congenital heart disease: A systematic review.
    Lau I; Sun Z
    J Med Radiat Sci; 2018 Sep; 65(3):226-236. PubMed ID: 29453808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional imaging and three-dimensional printing for plastic preparation of medical interventions.
    Cantré D; Langner S; Kaule S; Siewert S; Schmitz KP; Kemmling A; Weber MA
    Radiologe; 2020 Nov; 60(Suppl 1):70-79. PubMed ID: 32926194
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Moving beyond two-dimensional screens to interactive three-dimensional visualization in congenital heart disease.
    Byl JL; Sholler R; Gosnell JM; Samuel BP; Vettukattil JJ
    Int J Cardiovasc Imaging; 2020 Aug; 36(8):1567-1573. PubMed ID: 32335820
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Utility of three-dimensional models in resident education on simple and complex intracardiac congenital heart defects.
    White SC; Sedler J; Jones TW; Seckeler M
    Congenit Heart Dis; 2018 Nov; 13(6):1045-1049. PubMed ID: 30230245
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Geometrical accuracy evaluation of an affordable 3D printing technology for spine physical models.
    Eltes PE; Kiss L; Bartos M; Gyorgy ZM; Csakany T; Bereczki F; Lesko V; Puhl M; Varga PP; Lazary A
    J Clin Neurosci; 2020 Feb; 72():438-446. PubMed ID: 31911105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-Dimensional Printing Applications in Percutaneous Structural Heart Interventions.
    Harb SC; Rodriguez LL; Vukicevic M; Kapadia SR; Little SH
    Circ Cardiovasc Imaging; 2019 Oct; 12(10):e009014. PubMed ID: 31594408
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hands-on surgical training of congenital heart surgery using 3-dimensional print models.
    Yoo SJ; Spray T; Austin EH; Yun TJ; van Arsdell GS
    J Thorac Cardiovasc Surg; 2017 Jun; 153(6):1530-1540. PubMed ID: 28268011
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3D printing and modeling of congenital heart defects: A technical review.
    Townsend K; Pietila T
    Birth Defects Res; 2018 Aug; 110(13):1091-1097. PubMed ID: 30063112
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Three-Dimensional Printing in Orthopedic Surgery.
    Eltorai AE; Nguyen E; Daniels AH
    Orthopedics; 2015 Nov; 38(11):684-7. PubMed ID: 26558661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Hybrid 3D printing: a game-changer in personalized cardiac medicine?
    Kurup HK; Samuel BP; Vettukattil JJ
    Expert Rev Cardiovasc Ther; 2015 Dec; 13(12):1281-4. PubMed ID: 26465262
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Impact of Three-Dimensional Printing on the Study and Treatment of Congenital Heart Disease.
    Bramlet M; Olivieri L; Farooqi K; Ripley B; Coakley M
    Circ Res; 2017 Mar; 120(6):904-907. PubMed ID: 28302738
    [No Abstract]   [Full Text] [Related]  

  • 35. Three-dimensional printed models in congenital heart disease.
    Cantinotti M; Valverde I; Kutty S
    Int J Cardiovasc Imaging; 2017 Jan; 33(1):137-144. PubMed ID: 27677762
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Three-dimensional patient-specific cardiac model for surgical planning in Nikaidoh procedure.
    Valverde I; Gomez G; Gonzalez A; Suarez-Mejias C; Adsuar A; Coserria JF; Uribe S; Gomez-Cia T; Hosseinpour AR
    Cardiol Young; 2015 Apr; 25(4):698-704. PubMed ID: 24809416
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mixed reality holograms for heart surgery planning: first user experience in congenital heart disease.
    Brun H; Bugge RAB; Suther LKR; Birkeland S; Kumar R; Pelanis E; Elle OJ
    Eur Heart J Cardiovasc Imaging; 2019 Aug; 20(8):883-888. PubMed ID: 30534951
    [TBL] [Abstract][Full Text] [Related]  

  • 38. OpHeart commentary: Three-dimensional printing for surgical planning in complex congenital heart disease.
    Garcia A
    J Card Surg; 2019 Sep; 34(9):753. PubMed ID: 31374590
    [No Abstract]   [Full Text] [Related]  

  • 39. Three-dimensional printing in cardiology: Current applications and future challenges.
    Luo H; Meyer-Szary J; Wang Z; Sabiniewicz R; Liu Y
    Cardiol J; 2017; 24(4):436-444. PubMed ID: 28541602
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Digital Design and 3D Printing of Aortic Arch Reconstruction in HLHS for Surgical Simulation and Training.
    Chen SA; Ong CS; Malguria N; Vricella LA; Garcia JR; Hibino N
    World J Pediatr Congenit Heart Surg; 2018 Jul; 9(4):454-458. PubMed ID: 29945510
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.