These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 28329760)

  • 1. Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts.
    Lin L; Zhou W; Gao R; Yao S; Zhang X; Xu W; Zheng S; Jiang Z; Yu Q; Li YW; Shi C; Wen XD; Ma D
    Nature; 2017 Apr; 544(7648):80-83. PubMed ID: 28329760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Atomically Dispersed Ni/α-MoC Catalyst for Hydrogen Production from Methanol/Water.
    Lin L; Yu Q; Peng M; Li A; Yao S; Tian S; Liu X; Li A; Jiang Z; Gao R; Han X; Li YW; Wen XD; Zhou W; Ma D
    J Am Chem Soc; 2021 Jan; 143(1):309-317. PubMed ID: 33369393
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A stable low-temperature H
    Zhang X; Zhang M; Deng Y; Xu M; Artiglia L; Wen W; Gao R; Chen B; Yao S; Zhang X; Peng M; Yan J; Li A; Jiang Z; Gao X; Cao S; Yang C; Kropf AJ; Shi J; Xie J; Bi M; van Bokhoven JA; Li YW; Wen X; Flytzani-Stephanopoulos M; Shi C; Zhou W; Ma D
    Nature; 2021 Jan; 589(7842):396-401. PubMed ID: 33473229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving efficient almost CO-free hydrogen production from methanol steam reforming on Cu modified α-MoC.
    Jiang W; Liu A; Yao M; Zhang Y; Fu P
    RSC Adv; 2024 Jan; 14(3):2036-2047. PubMed ID: 38205234
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hydrogen production via aqueous-phase reforming for high-temperature proton exchange membrane fuel cells - a review.
    Lakhtaria P; Ribeirinha P; Huhtinen W; Viik S; Sousa J; Mendes A
    Open Res Eur; 2021; 1():81. PubMed ID: 37645145
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Low-Temperature Hydrogen Production from Aqueous Methanol Based on Synergism between Cationic Pt and Interfacial Basic LaO
    Mori K; Shimoji Y; Yamashita H
    ChemSusChem; 2023 Aug; 16(16):e202300283. PubMed ID: 37183559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainable production of hydrogen with high purity from methanol and water at low temperatures.
    Zhang S; Liu Y; Zhang M; Ma Y; Hu J; Qu Y
    Nat Commun; 2022 Sep; 13(1):5527. PubMed ID: 36130943
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology.
    Iulianelli A; Ghasemzadeh K; Basile A
    Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide.
    Nielsen M; Alberico E; Baumann W; Drexler HJ; Junge H; Gladiali S; Beller M
    Nature; 2013 Mar; 495(7439):85-9. PubMed ID: 23446345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases.
    He R; Davda RR; Dumesic JA
    J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Efficient Low-temperature Hydrogen Production by Electrochemical-assisted Methanol Steam Reforming.
    Liu Q; Du S; Liu T; Gong L; Wu Y; Lin J; Yang P; Huang G; Li M; Wu Y; Zhou Y; Li Y; Tao L; Wang S
    Angew Chem Int Ed Engl; 2024 Feb; 63(7):e202315157. PubMed ID: 38143245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Efficient Hydrogen Production from Methanol Using a Single-Site Pt
    Chen LN; Hou KP; Liu YS; Qi ZY; Zheng Q; Lu YH; Chen JY; Chen JL; Pao CW; Wang SB; Li YB; Xie SH; Liu FD; Prendergast D; Klebanoff LE; Stavila V; Allendorf MD; Guo J; Zheng LS; Su J; Somorjai GA
    J Am Chem Soc; 2019 Nov; 141(45):17995-17999. PubMed ID: 31647653
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atomically dispersed iron hydroxide anchored on Pt for preferential oxidation of CO in H
    Cao L; Liu W; Luo Q; Yin R; Wang B; Weissenrieder J; Soldemo M; Yan H; Lin Y; Sun Z; Ma C; Zhang W; Chen S; Wang H; Guan Q; Yao T; Wei S; Yang J; Lu J
    Nature; 2019 Jan; 565(7741):631-635. PubMed ID: 30700869
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrogen from catalytic reforming of biomass-derived hydrocarbons in liquid water.
    Cortright RD; Davda RR; Dumesic JA
    Nature; 2002 Aug; 418(6901):964-7. PubMed ID: 12198544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A MEMS methanol reformer heated by decomposition of hydrogen peroxide.
    Kim T; Hwang JS; Kwon S
    Lab Chip; 2007 Jul; 7(7):835-41. PubMed ID: 17594001
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic-layered Au clusters on α-MoC as catalysts for the low-temperature water-gas shift reaction.
    Yao S; Zhang X; Zhou W; Gao R; Xu W; Ye Y; Lin L; Wen X; Liu P; Chen B; Crumlin E; Guo J; Zuo Z; Li W; Xie J; Lu L; Kiely CJ; Gu L; Shi C; Rodriguez JA; Ma D
    Science; 2017 Jul; 357(6349):389-393. PubMed ID: 28642235
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Atomically dispersed Ir/α-MoC catalyst with high metal loading and thermal stability for water-promoted hydrogenation reaction.
    Li S; Cao R; Xu M; Deng Y; Lin L; Yao S; Liang X; Peng M; Gao Z; Ge Y; Liu JX; Li WX; Zhou W; Ma D
    Natl Sci Rev; 2022 Jan; 9(1):nwab026. PubMed ID: 35111329
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A highly CO-tolerant atomically dispersed Pt catalyst for chemoselective hydrogenation.
    Lin L; Yao S; Gao R; Liang X; Yu Q; Deng Y; Liu J; Peng M; Jiang Z; Li S; Li YW; Wen XD; Zhou W; Ma D
    Nat Nanotechnol; 2019 Apr; 14(4):354-361. PubMed ID: 30804479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process.
    Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P
    Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maximizing the Synergistic Effect of CoNi Catalyst on α-MoC for Robust Hydrogen Production.
    Ge Y; Qin X; Li A; Deng Y; Lin L; Zhang M; Yu Q; Li S; Peng M; Xu Y; Zhao X; Xu M; Zhou W; Yao S; Ma D
    J Am Chem Soc; 2021 Jan; 143(2):628-633. PubMed ID: 33382262
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.