These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 28330134)

  • 81. Alkaline phytase from Lilium longiflorum: purification and structural characterization.
    Garchow BG; Jog SP; Mehta BD; Monosso JM; Murthy PP
    Protein Expr Purif; 2006 Apr; 46(2):221-32. PubMed ID: 16198125
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Purification and biochemical characterization of phytase from Bacillus cereus isolated from gastrointestinal tract of African giant snail (Achatina fulica).
    Sanni DM; Jimoh MB; Lawal OT; Bamidele SO
    Int Microbiol; 2023 Nov; 26(4):961-972. PubMed ID: 37020067
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Phytase, a new life for an "old" enzyme.
    Lei XG; Weaver JD; Mullaney E; Ullah AH; Azain MJ
    Annu Rev Anim Biosci; 2013 Jan; 1():283-309. PubMed ID: 25387021
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Molecular and physiological characterisation of a 3-phytase from soil bacterium Klebsiella sp. ASR1.
    Sajidan A; Farouk A; Greiner R; Jungblut P; Müller EC; Borriss R
    Appl Microbiol Biotechnol; 2004 Jul; 65(1):110-8. PubMed ID: 14727093
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Production and characterization of a novel, thermotolerant fungal phytase from agro-industrial byproducts for cattle feed.
    Kumari N; Bansal S
    Biotechnol Lett; 2021 Apr; 43(4):865-879. PubMed ID: 33387113
    [TBL] [Abstract][Full Text] [Related]  

  • 86. The efficacy of 2 phytases on inositol phosphate degradation in different segments of the gastrointestinal tract, calcium and phosphorus digestibility, and bone quality of broilers.
    Bello A; Dersjant-Li Y; Korver DR
    Poult Sci; 2019 Nov; 98(11):5789-5800. PubMed ID: 31265114
    [TBL] [Abstract][Full Text] [Related]  

  • 87. A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive.
    Huang H; Shao N; Wang Y; Luo H; Yang P; Zhou Z; Zhan Z; Yao B
    Appl Microbiol Biotechnol; 2009 May; 83(2):249-59. PubMed ID: 19139877
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Purification and Biochemical Characterization of Phytase Enzyme from Lactobacillus coryniformis (MH121153).
    Demir Y; Dikbaş N; Beydemir Ş
    Mol Biotechnol; 2018 Nov; 60(11):783-790. PubMed ID: 30171516
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Molecular cloning and the biochemical characterization of two novel phytases from B. subtilis 168 and B. licheniformis.
    Tye AJ; Siu FK; Leung TY; Lim BL
    Appl Microbiol Biotechnol; 2002 Jul; 59(2-3):190-7. PubMed ID: 12111145
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Production, characteristics and applications of phytase from a rhizosphere isolated Enterobacter sp. ACSS.
    Chanderman A; Puri AK; Permaul K; Singh S
    Bioprocess Biosyst Eng; 2016 Oct; 39(10):1577-87. PubMed ID: 27250653
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Functional Metagenomics Reveals a New Catalytic Domain, the Metallo-β-Lactamase Superfamily Domain, Associated with Phytase Activity.
    Castillo Villamizar GA; Funkner K; Nacke H; Foerster K; Daniel R
    mSphere; 2019 Jun; 4(3):. PubMed ID: 31217298
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Effect of crop retention time and acidification of the feed on phytase efficacy in broiler chickens.
    Kristoffersen S; Itani K; Benzertiha A; Kierończyk B; Kjos NP; Svihus B
    Br Poult Sci; 2021 Jun; 62(3):443-451. PubMed ID: 33467889
    [TBL] [Abstract][Full Text] [Related]  

  • 93. New Bacterial Phytase through Metagenomic Prospection.
    Farias N; Almeida I; Meneses C
    Molecules; 2018 Feb; 23(2):. PubMed ID: 29462992
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Metabolism of extracellular inositol hexaphosphate (phytate) by Saccharomyces cerevisiae.
    Andlid TA; Veide J; Sandberg AS
    Int J Food Microbiol; 2004 Dec; 97(2):157-69. PubMed ID: 15541802
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Effect of a biosynthetic bacterial 6-phytase on the digestibility of phosphorus and phytate in midlactating dairy cows.
    Dersjant-Li Y; Kok I; Westreicher-Kristen E; García-González R; Mereu A; Christensen T; Marchal L
    J Anim Sci; 2023 Jan; 101():. PubMed ID: 36705267
    [TBL] [Abstract][Full Text] [Related]  

  • 96. The phytase subfamily of histidine acid phosphatases: isolation of genes for two novel phytases from the fungi Aspergillus terreus and Myceliophthora thermophila.
    Mitchell DB; Vogel K; Weimann BJ; Pasamontes L; van Loon APGM
    Microbiology (Reading); 1997 Jan; 143 ( Pt 1)():245-252. PubMed ID: 9025298
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Characteristics of an Acidic Phytase from Aspergillus aculeatus APF1 for Dephytinization of Biofortified Wheat Genotypes.
    Saxena A; Verma M; Singh B; Sangwan P; Yadav AN; Dhaliwal HS; Kumar V
    Appl Biochem Biotechnol; 2020 Jun; 191(2):679-694. PubMed ID: 31845197
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Performance of microbial phytases for gastric inositol phosphate degradation.
    Nielsen AV; Nyffenegger C; Meyer AS
    J Agric Food Chem; 2015 Jan; 63(3):943-50. PubMed ID: 25562369
    [TBL] [Abstract][Full Text] [Related]  

  • 99. The Impact of Phytases on the Release of Bioactive Inositols, the Profile of Inositol Phosphates, and the Release of Selected Minerals in the Technology of Buckwheat Beer Production.
    Duliński R; Zdaniewicz M; Pater A; Poniewska D; Żyła K
    Biomolecules; 2020 Jan; 10(2):. PubMed ID: 31973207
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Phytases of Probiotic Bacteria: Characteristics and Beneficial Aspects.
    Priyodip P; Prakash PY; Balaji S
    Indian J Microbiol; 2017 Jun; 57(2):148-154. PubMed ID: 28611491
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.