These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 28330209)
1. Biodegradation of real petroleum wastewater by immobilized hyper phenol-tolerant strains of Bacillus cereus in a fluidized bed bioreactor. Banerjee A; Ghoshal AK 3 Biotech; 2016 Dec; 6(2):137. PubMed ID: 28330209 [TBL] [Abstract][Full Text] [Related]
2. Bioremediation of petroleum wastewater by hyper-phenol tolerant Bacillus cereus: Preliminary studies with laboratory-scale batch process. Banerjee A; Ghoshal AK Bioengineered; 2017 Sep; 8(5):446-450. PubMed ID: 28095107 [TBL] [Abstract][Full Text] [Related]
3. Isolation and characterization of hyper phenol tolerant Bacillus sp. from oil refinery and exploration sites. Banerjee A; Ghoshal AK J Hazard Mater; 2010 Apr; 176(1-3):85-91. PubMed ID: 19945784 [TBL] [Abstract][Full Text] [Related]
4. Biodegradation of phenolic industrial wastewater in a fluidized bed bioreactor with immobilized cells of Pseudomonas putida. González G; Herrera G; García MT; Peña M Bioresour Technol; 2001 Nov; 80(2):137-42. PubMed ID: 11563704 [TBL] [Abstract][Full Text] [Related]
5. Study on the Changes in Immobilized Petroleum-Degrading Bacteria Beads in a Continuous Bioreactor Related to Physicochemical Performance, Degradation Ability, and Microbial Community. Liu Y; Li W; Qiao Y; Yu F; Wang B; Xue J; Wang M; Jiang Q; Zhou Z Int J Environ Res Public Health; 2022 Sep; 19(18):. PubMed ID: 36141622 [TBL] [Abstract][Full Text] [Related]
6. Impact of bioaugmentation with a consortium of bacteria on the remediation of wastewater-containing hydrocarbons. Domde P; Kapley A; Purohit HJ Environ Sci Pollut Res Int; 2007 Jan; 14(1):7-11. PubMed ID: 17352122 [TBL] [Abstract][Full Text] [Related]
7. Bioremediation of petroleum refinery wastewater using Bacillus subtilis IH-1 and assessment of its toxicity. Haq I; Kalamdhad AS; Malik A Arch Microbiol; 2024 Jun; 206(7):296. PubMed ID: 38856816 [TBL] [Abstract][Full Text] [Related]
8. Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Banerjee A; Ghoshal AK Bioresour Technol; 2010 Jul; 101(14):5501-7. PubMed ID: 20219360 [TBL] [Abstract][Full Text] [Related]
9. Microbial degradation of phenol in a modified three-stage airlift packing-bed reactor. Huang CH; Liou RM; Chen SH; Hung MY; Lai CL; Lai JY Water Environ Res; 2010 Mar; 82(3):249-58. PubMed ID: 20369569 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Halomonas halodurans and Bacillus halodurans in packed bed bioreactor for continuous removal of phenolic impurities in waste water. Benit N; Lourthuraj AA; Barathikannan K; Mostafa AA; Alodaini HA; Yassin MT; Hatamleh AA Environ Res; 2022 Jun; 209():112822. PubMed ID: 35093306 [TBL] [Abstract][Full Text] [Related]
11. Isopropanol biodegradation by immobilized Paracoccus denitrificans in a three-phase fluidized bed reactor. Geng Y; Deng Y; Chen F; Jin H; Hou T; Tao K Prep Biochem Biotechnol; 2016 Nov; 46(8):747-754. PubMed ID: 26716611 [TBL] [Abstract][Full Text] [Related]
12. Biodegradation of phenol in a continuous process: comparative study of stirred tank and fluidized-bed bioreactors. González G; Herrera MG; García MT; Peña MM Bioresour Technol; 2001 Feb; 76(3):245-51. PubMed ID: 11198177 [TBL] [Abstract][Full Text] [Related]
13. [Efficiency and characteristic of biological activated carbon fluidized bed for oil-field wastewater treatment]. Li AJ; Liu H; Wang WY; Quan XC; Zhang D; Li ZL Huan Jing Ke Xue; 2006 May; 27(5):918-23. PubMed ID: 16850833 [TBL] [Abstract][Full Text] [Related]
14. Induced bioelectrochemical metabolism for bioremediation of petroleum refinery wastewater: Optimization of applied potential and flow of wastewater. Mohanakrishna G; Al-Raoush RI; Abu-Reesh IM Bioresour Technol; 2018 Jul; 260():227-232. PubMed ID: 29626782 [TBL] [Abstract][Full Text] [Related]
15. Identification of genes and pathways related to phenol degradation in metagenomic libraries from petroleum refinery wastewater. Silva CC; Hayden H; Sawbridge T; Mele P; De Paula SO; Silva LC; Vidigal PM; Vicentini R; Sousa MP; Torres AP; Santiago VM; Oliveira VM PLoS One; 2013; 8(4):e61811. PubMed ID: 23637911 [TBL] [Abstract][Full Text] [Related]
16. Enhanced phenol degradation in coking wastewater by immobilized laccase on magnetic mesoporous silica nanoparticles in a magnetically stabilized fluidized bed. Wang F; Hu Y; Guo C; Huang W; Liu CZ Bioresour Technol; 2012 Apr; 110():120-4. PubMed ID: 22382292 [TBL] [Abstract][Full Text] [Related]
17. Biodegradation of diesel fuel-contaminated wastewater using a three-phase fluidized bed reactor. Lohi A; Alvarez Cuenca M; Anania G; Upreti SR; Wan L J Hazard Mater; 2008 Jun; 154(1-3):105-11. PubMed ID: 18006229 [TBL] [Abstract][Full Text] [Related]
18. Aerobic digestion of starch wastewater in a fluidized bed bioreactor with low density biomass support. Rajasimman M; Karthikeyan C J Hazard Mater; 2007 May; 143(1-2):82-6. PubMed ID: 17030411 [TBL] [Abstract][Full Text] [Related]
19. Phenol-degrading denitrifying bacteria in wastewater sediments. Tong TT; Błaszczyk M; Przytocka-Jusiak M; Mycielski R Acta Microbiol Pol; 1998; 47(2):203-11. PubMed ID: 9839379 [TBL] [Abstract][Full Text] [Related]
20. [Quinoline removal in fluidized-bed bioreactor using immobilized cells]. Han L; Wang J; Liu H; Shi H; Qian Y Huan Jing Ke Xue; 2001 Jan; 22(1):78-80. PubMed ID: 11382050 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]