These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 28330271)
21. Optimization of silver nanoparticle biosynthesis by entomopathogenic fungi and assays of their antimicrobial and antifungal properties. Soleimani P; Mehrvar A; Michaud JP; Vaez N J Invertebr Pathol; 2022 May; 190():107749. PubMed ID: 35283206 [TBL] [Abstract][Full Text] [Related]
22. Microwave-Assisted Green Synthesis and Characterization of Silver Nanoparticles Using Ashraf H; Anjum T; Riaz S; Naseem S Front Microbiol; 2020; 11():238. PubMed ID: 32210928 [TBL] [Abstract][Full Text] [Related]
23. Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera; Culicidae). Salunkhe RB; Patil SV; Patil CD; Salunke BK Parasitol Res; 2011 Sep; 109(3):823-31. PubMed ID: 21451993 [TBL] [Abstract][Full Text] [Related]
24. Biosynthesis, characterization and antibacterial activity of silver nanoparticles using an endophytic fungal supernatant of Singh T; Jyoti K; Patnaik A; Singh A; Chauhan R; Chandel SS J Genet Eng Biotechnol; 2017 Jun; 15(1):31-39. PubMed ID: 30647639 [TBL] [Abstract][Full Text] [Related]
25. Silver nanoparticles induced alterations in multiple cellular targets, which are critical for drug susceptibilities and pathogenicity in fungal pathogen ( Radhakrishnan VS; Reddy Mudiam MK; Kumar M; Dwivedi SP; Singh SP; Prasad T Int J Nanomedicine; 2018; 13():2647-2663. PubMed ID: 29760548 [TBL] [Abstract][Full Text] [Related]
26. Fabrication and characterisation of silver nanoparticles using bract extract of Maruthai J; Muthukumarasamy A; Baskaran B IET Nanobiotechnol; 2019 Apr; 13(2):134-143. PubMed ID: 31051443 [TBL] [Abstract][Full Text] [Related]
27. Mycosynthesis of Silver Nanoparticles Using Screened Tomah AA; Alamer ISA; Li B; Zhang JZ Nanomaterials (Basel); 2020 Sep; 10(10):. PubMed ID: 33008115 [TBL] [Abstract][Full Text] [Related]
28. Biogenic Synthesis of Silver Nanoparticles using Datkhile KD; Durgawale PP; Patil SR Pharm Nanotechnol; 2023; 11(2):180-193. PubMed ID: 36503464 [TBL] [Abstract][Full Text] [Related]
30. Elucidating Protein Involvement in the Stabilization of the Biogenic Silver Nanoparticles. Ballottin D; Fulaz S; Souza ML; Corio P; Rodrigues AG; Souza AO; Gaspari PM; Gomes AF; Gozzo F; Tasic L Nanoscale Res Lett; 2016 Dec; 11(1):313. PubMed ID: 27356560 [TBL] [Abstract][Full Text] [Related]
31. Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Roni M; Murugan K; Panneerselvam C; Subramaniam J; Hwang JS Parasitol Res; 2013 Mar; 112(3):981-90. PubMed ID: 23239092 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of Sclerotinia sclerotiorum MTCC 8785 as a biological agent for the synthesis of silver nanoparticles and assessment of their antifungal potential against Trichoderma harzianum MTCC 801. Saxena J; Ayushi KM Environ Res; 2023 Jan; 216(Pt 3):114752. PubMed ID: 36351471 [TBL] [Abstract][Full Text] [Related]
33. Ecofriendly phytofabrication of silver nanoparticles using aqueous extract of Cuphea carthagenensis and their antioxidant potential and antibacterial activity against clinically important human pathogens. Rather MA; Deori PJ; Gupta K; Daimary N; Deka D; Qureshi A; Dutta TK; Joardar SN; Mandal M Chemosphere; 2022 Aug; 300():134497. PubMed ID: 35398470 [TBL] [Abstract][Full Text] [Related]
34. Size-dependent activity of silver nanoparticles on the morphological switch and biofilm formation of opportunistic pathogenic yeasts. Szerencsés B; Igaz N; Tóbiás Á; Prucsi Z; Rónavári A; Bélteky P; Madarász D; Papp C; Makra I; Vágvölgyi C; Kónya Z; Pfeiffer I; Kiricsi M BMC Microbiol; 2020 Jun; 20(1):176. PubMed ID: 32571216 [TBL] [Abstract][Full Text] [Related]
35. Bimetallic nanoparticles and biochar produced by Aldahasi RM; Shami A; Mohammed AE PeerJ; 2024; 12():e17023. PubMed ID: 38440409 [No Abstract] [Full Text] [Related]
36. Green synthesis of silver nanoparticles using cranberry powder aqueous extract: characterization and antimicrobial properties. Ashour AA; Raafat D; El-Gowelli HM; El-Kamel AH Int J Nanomedicine; 2015; 10():7207-21. PubMed ID: 26664112 [TBL] [Abstract][Full Text] [Related]
37. Exploring the Biomedical Applications of Biosynthesized Silver Nanoparticles Using Hou T; Guo Y; Han W; Zhou Y; Netala VR; Li H; Li H; Zhang Z Molecules; 2023 Sep; 28(17):. PubMed ID: 37687260 [TBL] [Abstract][Full Text] [Related]
38. Phytosynthesis of silver nanoparticles using Artemisia marschalliana Sprengel aerial part extract and assessment of their antioxidant, anticancer, and antibacterial properties. Salehi S; Shandiz SA; Ghanbar F; Darvish MR; Ardestani MS; Mirzaie A; Jafari M Int J Nanomedicine; 2016; 11():1835-46. PubMed ID: 27199558 [TBL] [Abstract][Full Text] [Related]
39. The Green Synthesis of Silver Nanoparticles from Qureshi AK; Farooq U; Shakeel Q; Ali S; Ashiq S; Shahzad S; Tariq M; Seleiman MF; Jamal A; Saeed MF; Manachini B Pathogens; 2023 Oct; 12(10):. PubMed ID: 37887762 [TBL] [Abstract][Full Text] [Related]
40. Tuber extract of Arisaema flavum eco-benignly and effectively synthesize silver nanoparticles: Photocatalytic and antibacterial response against multidrug resistant engineered E. coli QH4. Rahman AU; Khan AU; Yuan Q; Wei Y; Ahmad A; Ullah S; Khan ZUH; Shams S; Tariq M; Ahmad W J Photochem Photobiol B; 2019 Apr; 193():31-38. PubMed ID: 30802773 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]