BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 28330355)

  • 1. Fast divide-and-conquer algorithm for evaluating polarization in classical force fields.
    Nocito D; Beran GJ
    J Chem Phys; 2017 Mar; 146(11):114103. PubMed ID: 28330355
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Massively Parallel Implementation of Divide-and-Conquer Jacobi Iterations Using Particle-Mesh Ewald for Force Field Polarization.
    Nocito D; Beran GJO
    J Chem Theory Comput; 2018 Jul; 14(7):3633-3642. PubMed ID: 29847125
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Linear-scaling implementation of molecular electronic self-consistent field theory.
    Sałek P; Høst S; Thøgersen L; Jørgensen P; Manninen P; Olsen J; Jansík B; Reine S; Pawłowski F; Tellgren E; Helgaker T; Coriani S
    J Chem Phys; 2007 Mar; 126(11):114110. PubMed ID: 17381199
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scalable evaluation of polarization energy and associated forces in polarizable molecular dynamics: II. Toward massively parallel computations using smooth particle mesh Ewald.
    Lagardère L; Lipparini F; Polack É; Stamm B; Cancès É; Schnieders M; Ren P; Maday Y; Piquemal JP
    J Chem Theory Comput; 2015 Jun; 11(6):2589-99. PubMed ID: 26575557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A coupled polarization-matrix inversion and iteration approach for accelerating the dipole convergence in a polarizable potential function.
    Xie W; Pu J; Gao J
    J Phys Chem A; 2009 Mar; 113(10):2109-16. PubMed ID: 19123850
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Evaluation of Polarization Energy and Associated Forces in Polarizable Molecular Dynamics: II.Towards Massively Parallel Computations using Smooth Particle Mesh Ewald.
    Lagardère L; Lipparini F; Polack É; Stamm B; Cancès É; Schnieders M; Ren P; Maday Y; Piquemal JP
    J Chem Theory Comput; 2014 Feb; 10(4):1638-1651. PubMed ID: 26512230
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Least-Squares Commutator in the Iterative Subspace Method for Accelerating Self-Consistent Field Convergence.
    Li H; Yaron DJ
    J Chem Theory Comput; 2016 Nov; 12(11):5322-5332. PubMed ID: 27709930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Truncated Conjugate Gradient: An Optimal Strategy for the Analytical Evaluation of the Many-Body Polarization Energy and Forces in Molecular Simulations.
    Aviat F; Levitt A; Stamm B; Maday Y; Ren P; Ponder JW; Lagardère L; Piquemal JP
    J Chem Theory Comput; 2017 Jan; 13(1):180-190. PubMed ID: 28068773
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Iterative image-domain decomposition for dual-energy CT.
    Niu T; Dong X; Petrongolo M; Zhu L
    Med Phys; 2014 Apr; 41(4):041901. PubMed ID: 24694132
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Projected Commutator DIIS Method for Accelerating Hybrid Functional Electronic Structure Calculations.
    Hu W; Lin L; Yang C
    J Chem Theory Comput; 2017 Nov; 13(11):5458-5467. PubMed ID: 28937762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The augmented Roothaan-Hall method for optimizing Hartree-Fock and Kohn-Sham density matrices.
    Høst S; Olsen J; Jansík B; Thøgersen L; Jørgensen P; Helgaker T
    J Chem Phys; 2008 Sep; 129(12):124106. PubMed ID: 19045005
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Discarding Information from Previous Iterations in an Optimal Way To Solve the Coupled Cluster Amplitude Equations.
    Ettenhuber P; Jørgensen P
    J Chem Theory Comput; 2015 Apr; 11(4):1518-24. PubMed ID: 26574363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Self-consistent field for fragmented quantum mechanical model of large molecular systems.
    Jin Y; Su NQ; Xu X; Hu H
    J Comput Chem; 2016 Jan; 37(3):321-6. PubMed ID: 26575414
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An efficient algorithm for solving nonlinear equations with a minimal number of trial vectors: applications to atomic-orbital based coupled-cluster theory.
    Ziółkowski M; Weijo V; Jorgensen P; Olsen J
    J Chem Phys; 2008 May; 128(20):204105. PubMed ID: 18513008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A trust-region augmented Hessian implementation for restricted and unrestricted Hartree-Fock and Kohn-Sham methods.
    Helmich-Paris B
    J Chem Phys; 2021 Apr; 154(16):164104. PubMed ID: 33940809
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Self-Adaptive Fuzzy
    Ren M; Liu P; Wang Z; Yi J
    Comput Intell Neurosci; 2016; 2016():2647389. PubMed ID: 28042291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient treatment of induced dipoles.
    Simmonett AC; Pickard FC; Shao Y; Cheatham TE; Brooks BR
    J Chem Phys; 2015 Aug; 143(7):074115. PubMed ID: 26298123
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Accelerating self-consistent field convergence with the augmented Roothaan-Hall energy function.
    Hu X; Yang W
    J Chem Phys; 2010 Feb; 132(5):054109. PubMed ID: 20136307
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A second-level diagonal preconditioner for single-step SNPBLUP.
    Vandenplas J; Calus MPL; Eding H; Vuik C
    Genet Sel Evol; 2019 Jun; 51(1):30. PubMed ID: 31238880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reduced computational cost of polarizable force fields by a modification of the always stable predictor-corrector.
    Nocito D; Beran GJO
    J Chem Phys; 2019 Apr; 150(15):151103. PubMed ID: 31005093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.