These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 28330367)

  • 41. Parallel O(N) Stokes' solver towards scalable Brownian dynamics of hydrodynamically interacting objects in general geometries.
    Zhao X; Li J; Jiang X; Karpeev D; Heinonen O; Smith B; Hernandez-Ortiz JP; de Pablo JJ
    J Chem Phys; 2017 Jun; 146(24):244114. PubMed ID: 28668032
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Micro-magnetic simulation study on the magnetic particle imaging performance of anisotropic mono-domain particles.
    Weizenecker J; Gleich B; Rahmer J; Borgert J
    Phys Med Biol; 2012 Nov; 57(22):7317-27. PubMed ID: 23079678
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Langevin dynamics for the transport of flexible biological macromolecules in confined geometries.
    Peters MH
    J Chem Phys; 2011 Jan; 134(2):025105. PubMed ID: 21241153
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Method for Molecular Dynamics on Curved Surfaces.
    Paquay S; Kusters R
    Biophys J; 2016 Mar; 110(6):1226-33. PubMed ID: 27028633
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Combining Density Functional Theory and Green's Function Theory: Range-Separated, Nonlocal, Dynamic, and Orbital-Dependent Hybrid Functional.
    Kananenka AA; Zgid D
    J Chem Theory Comput; 2017 Nov; 13(11):5317-5331. PubMed ID: 28921986
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Monte Carlo and event-driven dynamics of Brownian particles with orientational degrees of freedom.
    Romano F; De Michele C; Marenduzzo D; Sanz E
    J Chem Phys; 2011 Sep; 135(12):124106. PubMed ID: 21974511
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Persistence of an active asymmetric rigid Brownian particle in two dimensions.
    Ghosh A; Mandal S; Chakraborty D
    J Chem Phys; 2022 Nov; 157(19):194905. PubMed ID: 36414451
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Efficient Brownian dynamics simulation of DNA molecules with hydrodynamic interactions in linear flows.
    Fu SP; Young YN; Jiang S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063008. PubMed ID: 26172793
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Are hydrodynamic interactions important in the kinetics of hydrophobic collapse?
    Li J; Morrone JA; Berne BJ
    J Phys Chem B; 2012 Sep; 116(37):11537-44. PubMed ID: 22931395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Calculating free-energy profiles in biomolecular systems from fast nonequilibrium processes.
    Forney MW; Janosi L; Kosztin I
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051913. PubMed ID: 19113161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hybrid models for chemical reaction networks: Multiscale theory and application to gene regulatory systems.
    Winkelmann S; Schütte C
    J Chem Phys; 2017 Sep; 147(11):114115. PubMed ID: 28938803
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Space-time histories approach to fast stochastic simulation of bimolecular reactions.
    Prüstel T; Meier-Schellersheim M
    J Chem Phys; 2021 Apr; 154(16):164111. PubMed ID: 33940845
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiscale Estimation of Binding Kinetics Using Brownian Dynamics, Molecular Dynamics and Milestoning.
    Votapka LW; Amaro RE
    PLoS Comput Biol; 2015 Oct; 11(10):e1004381. PubMed ID: 26505480
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recent progress in adaptive multiscale molecular dynamics simulations of soft matter.
    Nielsen SO; Bulo RE; Moore PB; Ensing B
    Phys Chem Chem Phys; 2010 Oct; 12(39):12401-14. PubMed ID: 20734007
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A combined quasi-continuum/Langevin equation approach to study the self-diffusion dynamics of confined fluids.
    Sanghi T; Aluru NR
    J Chem Phys; 2013 Mar; 138(12):124109. PubMed ID: 23556711
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Quantifying stochastic effects in biochemical reaction networks using partitioned leaping.
    Harris LA; Piccirilli AM; Majusiak ER; Clancy P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 May; 79(5 Pt 1):051906. PubMed ID: 19518479
    [TBL] [Abstract][Full Text] [Related]  

  • 57. First-passage kinetic Monte Carlo method.
    Oppelstrup T; Bulatov VV; Donev A; Kalos MH; Gilmer GH; Sadigh B
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066701. PubMed ID: 20365296
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Rigid body dynamics approach to Stokesian dynamics simulations of nonspherical particles.
    Kutteh R
    J Chem Phys; 2010 May; 132(17):174107. PubMed ID: 20459156
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Reaction Brownian dynamics and the effect of spatial fluctuations on the gain of a push-pull network.
    Morelli MJ; ten Wolde PR
    J Chem Phys; 2008 Aug; 129(5):054112. PubMed ID: 18698893
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Brownian dynamics simulations of the self- and collective rotational diffusion coefficients of rigid long thin rods.
    Tao YG; den Otter WK; Padding JT; Dhont JK; Briels WJ
    J Chem Phys; 2005 Jun; 122(24):244903. PubMed ID: 16035812
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.