BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 28330374)

  • 21. Emerging contaminants of high concern and their enzyme-assisted biodegradation - A review.
    Bilal M; Adeel M; Rasheed T; Zhao Y; Iqbal HMN
    Environ Int; 2019 Mar; 124():336-353. PubMed ID: 30660847
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Laccase and tyrosinase activities in lichens].
    Zavarzina AG; Zavarzin AA
    Mikrobiologiia; 2006; 75(5):630-41. PubMed ID: 17091585
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects.
    Narayanan M; Ali SS; El-Sheekh M
    J Environ Manage; 2023 May; 334():117532. PubMed ID: 36801803
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Laccases from Marine Organisms and Their Applications in the Biodegradation of Toxic and Environmental Pollutants: a Review.
    Theerachat M; Guieysse D; Morel S; Remaud-Siméon M; Chulalaksananukul W
    Appl Biochem Biotechnol; 2019 Feb; 187(2):583-611. PubMed ID: 30009326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinspired production of magnetic laccase-biotitania particles for the removal of endocrine disrupting chemicals.
    Ardao I; Magnin D; Agathos SN
    Biotechnol Bioeng; 2015 Oct; 112(10):1986-96. PubMed ID: 26058804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Laccases for biorefinery applications: a critical review on challenges and perspectives.
    Roth S; Spiess AC
    Bioprocess Biosyst Eng; 2015 Dec; 38(12):2285-313. PubMed ID: 26437966
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Monitoring enzymatic degradation of emerging contaminants using a chip-based robotic nano-ESI-MS tool.
    Stadlmair LF; Letzel T; Graßmann J
    Anal Bioanal Chem; 2018 Jan; 410(1):27-32. PubMed ID: 29150808
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Biodegradation of bisphenols with immobilized laccase or tyrosinase on polyacrylonitrile beads.
    Nicolucci C; Rossi S; Menale C; Godjevargova T; Ivanov Y; Bianco M; Mita L; Bencivenga U; Mita DG; Diano N
    Biodegradation; 2011 Jun; 22(3):673-83. PubMed ID: 21125313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Laccases: structure, function, and potential application in water bioremediation.
    Arregui L; Ayala M; Gómez-Gil X; Gutiérrez-Soto G; Hernández-Luna CE; Herrera de Los Santos M; Levin L; Rojo-Domínguez A; Romero-Martínez D; Saparrat MCN; Trujillo-Roldán MA; Valdez-Cruz NA
    Microb Cell Fact; 2019 Nov; 18(1):200. PubMed ID: 31727078
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The crucial role of bacterial laccases in the bioremediation of petroleum hydrocarbons.
    Zhang Y; Lin DF; Hao J; Zhao ZH; Zhang YJ
    World J Microbiol Biotechnol; 2020 Jul; 36(8):116. PubMed ID: 32661601
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elucidating the mechanism of laccase and tyrosinase in wheat bread making.
    Selinheimo E; Autio K; Kruus K; Buchert J
    J Agric Food Chem; 2007 Jul; 55(15):6357-65. PubMed ID: 17602567
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adsorption of Trametes versicolor laccase to soil iron and aluminum minerals: enzyme activity, kinetics and stability studies.
    Wu Y; Jiang Y; Jiao J; Liu M; Hu F; Griffiths BS; Li H
    Colloids Surf B Biointerfaces; 2014 Feb; 114():342-8. PubMed ID: 24225344
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Fungal laccases - occurrence and properties.
    Baldrian P
    FEMS Microbiol Rev; 2006 Mar; 30(2):215-42. PubMed ID: 16472305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Fungal tyrosinases: new prospects in molecular characteristics, bioengineering and biotechnological applications.
    Halaouli S; Asther M; Sigoillot JC; Hamdi M; Lomascolo A
    J Appl Microbiol; 2006 Feb; 100(2):219-32. PubMed ID: 16430498
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Two Decades of Laccases: Advancing Sustainability in the Chemical Industry.
    Cannatelli MD; Ragauskas AJ
    Chem Rec; 2017 Jan; 17(1):122-140. PubMed ID: 27492131
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Oxidation of milled wood lignin with laccase, tyrosinase and horseradish peroxidase.
    Grönqvist S; Viikari L; Niku-Paavola ML; Orlandi M; Canevali C; Buchert J
    Appl Microbiol Biotechnol; 2005 Jun; 67(4):489-94. PubMed ID: 15602685
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring current tendencies in techniques and materials for immobilization of laccases - A review.
    Alvarado-Ramírez L; Rostro-Alanis M; Rodríguez-Rodríguez J; Castillo-Zacarías C; Sosa-Hernández JE; Barceló D; Iqbal HMN; Parra-Saldívar R
    Int J Biol Macromol; 2021 Jun; 181():683-696. PubMed ID: 33798577
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Altering the phenolics profile of a green tea leaves extract using exogenous oxidases.
    Verloop AJ; Gruppen H; Bisschop R; Vincken JP
    Food Chem; 2016 Apr; 196():1197-206. PubMed ID: 26593607
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Laccases: structure, reactions, distribution.
    Claus H
    Micron; 2004; 35(1-2):93-6. PubMed ID: 15036303
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.