These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
613 related articles for article (PubMed ID: 28330431)
1. Font Tellado S; Bonani W; Balmayor ER; Foehr P; Motta A; Migliaresi C; van Griensven M Tissue Eng Part A; 2017 Aug; 23(15-16):859-872. PubMed ID: 28330431 [TBL] [Abstract][Full Text] [Related]
2. Heparin functionalization increases retention of TGF-β2 and GDF5 on biphasic silk fibroin scaffolds for tendon/ligament-to-bone tissue engineering. Font Tellado S; Chiera S; Bonani W; Poh PSP; Migliaresi C; Motta A; Balmayor ER; van Griensven M Acta Biomater; 2018 May; 72():150-166. PubMed ID: 29550439 [TBL] [Abstract][Full Text] [Related]
3. [PREPARATION AND PERFORMANCE RESEARCH OF SILK FIBROIN COLLAGEN BLEND SCAFFOLD]. Sun K; Nian Z; Xu C; Li R; Li H Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2014 Jul; 28(7):903-8. PubMed ID: 26462359 [TBL] [Abstract][Full Text] [Related]
4. Preparation of dexamethasone-loaded biphasic calcium phosphate nanoparticles/collagen porous composite scaffolds for bone tissue engineering. Chen Y; Kawazoe N; Chen G Acta Biomater; 2018 Feb; 67():341-353. PubMed ID: 29242161 [TBL] [Abstract][Full Text] [Related]
5. Braided nanofibrous scaffold for tendon and ligament tissue engineering. Barber JG; Handorf AM; Allee TJ; Li WJ Tissue Eng Part A; 2013 Jun; 19(11-12):1265-74. PubMed ID: 21895485 [TBL] [Abstract][Full Text] [Related]
6. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction. Park HJ; Min KD; Lee MC; Kim SH; Lee OJ; Ju HW; Moon BM; Lee JM; Park YR; Kim DW; Jeong JY; Park CH J Biomed Mater Res A; 2016 Jul; 104(7):1779-87. PubMed ID: 26999521 [TBL] [Abstract][Full Text] [Related]
7. Chondrogenic differentiation of rat MSCs on porous scaffolds of silk fibroin/chitosan blends. Bhardwaj N; Kundu SC Biomaterials; 2012 Apr; 33(10):2848-57. PubMed ID: 22261099 [TBL] [Abstract][Full Text] [Related]
8. Aligned fibrous scaffolds for enhanced mechanoresponse and tenogenesis of mesenchymal stem cells. Teh TK; Toh SL; Goh JC Tissue Eng Part A; 2013 Jun; 19(11-12):1360-72. PubMed ID: 23327653 [TBL] [Abstract][Full Text] [Related]
9. Enhanced osteogenesis of β-tricalcium phosphate reinforced silk fibroin scaffold for bone tissue biofabrication. Lee DH; Tripathy N; Shin JH; Song JE; Cha JG; Min KD; Park CH; Khang G Int J Biol Macromol; 2017 Feb; 95():14-23. PubMed ID: 27818295 [TBL] [Abstract][Full Text] [Related]
10. A hybrid silk/RADA-based fibrous scaffold with triple hierarchy for ligament regeneration. Chen K; Sahoo S; He P; Ng KS; Toh SL; Goh JC Tissue Eng Part A; 2012 Jul; 18(13-14):1399-409. PubMed ID: 22429111 [TBL] [Abstract][Full Text] [Related]
11. Modified silk fibroin scaffolds with collagen/decellularized pulp for bone tissue engineering in cleft palate: Morphological structures and biofunctionalities. Sangkert S; Meesane J; Kamonmattayakul S; Chai WL Mater Sci Eng C Mater Biol Appl; 2016 Jan; 58():1138-49. PubMed ID: 26478414 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of and in vitro and in vivo evaluation of a novel TGF-β1-SF-CS three-dimensional scaffold for bone tissue engineering. Tong S; Xu DP; Liu ZM; Du Y; Wang XK Int J Mol Med; 2016 Aug; 38(2):367-80. PubMed ID: 27352815 [TBL] [Abstract][Full Text] [Related]
13. Response of bone marrow stromal cells to graded co-electrospun scaffolds and its implications for engineering the ligament-bone interface. Samavedi S; Guelcher SA; Goldstein AS; Whittington AR Biomaterials; 2012 Nov; 33(31):7727-35. PubMed ID: 22835644 [TBL] [Abstract][Full Text] [Related]
14. Enhanced osteoinductivity and osteoconductivity through hydroxyapatite coating of silk-based tissue-engineered ligament scaffold. He P; Sahoo S; Ng KS; Chen K; Toh SL; Goh JC J Biomed Mater Res A; 2013 Feb; 101(2):555-66. PubMed ID: 22949167 [TBL] [Abstract][Full Text] [Related]
15. Knitted silk mesh-like scaffold incorporated with sponge-like regenerated silk fibroin/collagen I and seeded with mesenchymal stem cells for repairing Achilles tendon in rabbits. Tang L; Yang Y; Li Y; Yang G; Luo T; Xu Y; Zhang W Acta Bioeng Biomech; 2018; 20(4):77-87. PubMed ID: 30520436 [TBL] [Abstract][Full Text] [Related]
16. Optimization and evaluation of silk fibroin-chitosan freeze-dried porous scaffolds for cartilage tissue engineering application. Vishwanath V; Pramanik K; Biswas A J Biomater Sci Polym Ed; 2016; 27(7):657-74. PubMed ID: 26830046 [TBL] [Abstract][Full Text] [Related]
17. Silk fibroin/collagen and silk fibroin/chitosan blended three-dimensional scaffolds for tissue engineering. Sun K; Li H; Li R; Nian Z; Li D; Xu C Eur J Orthop Surg Traumatol; 2015 Feb; 25(2):243-9. PubMed ID: 25118870 [TBL] [Abstract][Full Text] [Related]