These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
358 related articles for article (PubMed ID: 28330557)
21. SUNRED, a natural extract-based biostimulant, application stimulates anthocyanin production in the skins of grapes. Deng Q; Xia H; Lin L; Wang J; Yuan L; Li K; Zhang J; Lv X; Liang D Sci Rep; 2019 Feb; 9(1):2590. PubMed ID: 30796303 [TBL] [Abstract][Full Text] [Related]
22. Low night temperature at veraison enhances the accumulation of anthocyanins in Corvina grapes (Vitis Vinifera L.). Gaiotti F; Pastore C; Filippetti I; Lovat L; Belfiore N; Tomasi D Sci Rep; 2018 Jun; 8(1):8719. PubMed ID: 29880890 [TBL] [Abstract][Full Text] [Related]
23. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions. Azuma A; Yakushiji H; Koshita Y; Kobayashi S Planta; 2012 Oct; 236(4):1067-80. PubMed ID: 22569920 [TBL] [Abstract][Full Text] [Related]
24. Changes of Anthocyanin Component Biosynthesis in 'Summer Black' Grape Berries after the Red Flesh Mutation Occurred. Zhang K; Liu Z; Guan L; Zheng T; Jiu S; Zhu X; Jia H; Fang J J Agric Food Chem; 2018 Sep; 66(35):9209-9218. PubMed ID: 30092133 [TBL] [Abstract][Full Text] [Related]
25. Pink-colored grape berry is the result of short insertion in intron of color regulatory gene. Shimazaki M; Fujita K; Kobayashi H; Suzuki S PLoS One; 2011; 6(6):e21308. PubMed ID: 21695059 [TBL] [Abstract][Full Text] [Related]
26. Effect of two exogenous plant growth regulators on the color and quality parameters of seedless table grape berries. Crupi P; Alba V; Masi G; Caputo AR; Tarricone L Food Res Int; 2019 Dec; 126():108667. PubMed ID: 31732072 [TBL] [Abstract][Full Text] [Related]
27. Tempranillo clones differ in the response of berry sugar and anthocyanin accumulation to elevated temperature. Arrizabalaga M; Morales F; Oyarzun M; Delrot S; Gomès E; Irigoyen JJ; Hilbert G; Pascual I Plant Sci; 2018 Feb; 267():74-83. PubMed ID: 29362101 [TBL] [Abstract][Full Text] [Related]
28. Anthocyanins profile of grape berries of Vitis amurensis, its hybrids and their wines. Zhao Q; Duan CQ; Wang J Int J Mol Sci; 2010 May; 11(5):2212-28. PubMed ID: 20559511 [TBL] [Abstract][Full Text] [Related]
29. Characterization of a multifunctional caffeoyl-CoA O-methyltransferase activated in grape berries upon drought stress. Giordano D; Provenzano S; Ferrandino A; Vitali M; Pagliarani C; Roman F; Cardinale F; Castellarin SD; Schubert A Plant Physiol Biochem; 2016 Apr; 101():23-32. PubMed ID: 26851572 [TBL] [Abstract][Full Text] [Related]
30. Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. 'Moscatel Galego'). Ferreira V; Matus JT; Pinto-Carnide O; Carrasco D; Arroyo-García R; Castro I BMC Genomics; 2019 Dec; 20(1):952. PubMed ID: 31815637 [TBL] [Abstract][Full Text] [Related]
31. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size. Wong DC; Lopez Gutierrez R; Dimopoulos N; Gambetta GA; Castellarin SD BMC Genomics; 2016 May; 17():416. PubMed ID: 27245662 [TBL] [Abstract][Full Text] [Related]
32. Supplementing with monochromatic blue LED light during the day, rather than at night, increases anthocyanins in the berry skin of grapevine (Vitis vinifera L.). Liu L; Kong J; Fan P; Wang Y; Duan W; Liang Z; Matus JT; Dai Z Planta; 2024 Aug; 260(3):69. PubMed ID: 39127837 [TBL] [Abstract][Full Text] [Related]
33. Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening. Gambino G; Boccacci P; Pagliarani C; Perrone I; Cuozzo D; Mannini F; Gribaudo I Int J Mol Sci; 2021 Mar; 22(6):. PubMed ID: 33802641 [No Abstract] [Full Text] [Related]
34. New member of the R2R3-MYB transcription factors family in grapevine suppresses the anthocyanin accumulation in the flowers of transgenic tobacco. Pérez-Díaz JR; Pérez-Díaz J; Madrid-Espinoza J; González-Villanueva E; Moreno Y; Ruiz-Lara S Plant Mol Biol; 2016 Jan; 90(1-2):63-76. PubMed ID: 26497001 [TBL] [Abstract][Full Text] [Related]
35. Grape Berry Flavonoid Responses to High Bunch Temperatures Post Véraison: Effect of Intensity and Duration of Exposure. Gouot JC; Smith JP; Holzapfel BP; Barril C Molecules; 2019 Nov; 24(23):. PubMed ID: 31783632 [TBL] [Abstract][Full Text] [Related]
36. Ectopic expression of VlmybA1 in grapevine activates a narrow set of genes involved in anthocyanin synthesis and transport. Cutanda-Perez MC; Ageorges A; Gomez C; Vialet S; Terrier N; Romieu C; Torregrosa L Plant Mol Biol; 2009 Apr; 69(6):633-48. PubMed ID: 19096760 [TBL] [Abstract][Full Text] [Related]
37. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation. Dai ZW; Meddar M; Renaud C; Merlin I; Hilbert G; Delrot S; Gomès E J Exp Bot; 2014 Aug; 65(16):4665-77. PubMed ID: 24477640 [TBL] [Abstract][Full Text] [Related]
38. Ultraviolet-B radiation and water deficit interact to alter flavonol and anthocyanin profiles in grapevine berries through transcriptomic regulation. Martínez-Lüscher J; Sánchez-Díaz M; Delrot S; Aguirreolea J; Pascual I; Gomès E Plant Cell Physiol; 2014 Nov; 55(11):1925-36. PubMed ID: 25231967 [TBL] [Abstract][Full Text] [Related]
39. Effects of ethylene on berry ripening and anthocyanin accumulation of 'Fujiminori' grape in protected cultivation. Wang P; Ge M; Yu A; Song W; Fang J; Leng X J Sci Food Agric; 2022 Feb; 102(3):1124-1136. PubMed ID: 34329497 [TBL] [Abstract][Full Text] [Related]
40. Methylation of Xia H; Shen Y; Hu R; Wang J; Deng H; Lin L; Lv X; Deng Q; Xu K; Liang D J Agric Food Chem; 2021 Dec; 69(51):15649-15659. PubMed ID: 34918911 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]