These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Phosphorylation at Thr432 induces structural destabilization of the CII ring in the circadian oscillator KaiC. Oyama K; Azai C; Matsuyama J; Terauchi K FEBS Lett; 2018 Jan; 592(1):36-45. PubMed ID: 29265368 [TBL] [Abstract][Full Text] [Related]
23. Conversion between two conformational states of KaiC is induced by ATP hydrolysis as a trigger for cyanobacterial circadian oscillation. Oyama K; Azai C; Nakamura K; Tanaka S; Terauchi K Sci Rep; 2016 Sep; 6():32443. PubMed ID: 27580682 [TBL] [Abstract][Full Text] [Related]
24. Protein-Protein Interactions in the Cyanobacterial Circadian Clock: Structure of KaiA Dimer in Complex with C-Terminal KaiC Peptides at 2.8 Å Resolution. Pattanayek R; Egli M Biochemistry; 2015 Aug; 54(30):4575-8. PubMed ID: 26200123 [TBL] [Abstract][Full Text] [Related]
25. Cyanobacterial circadian pacemaker: Kai protein complex dynamics in the KaiC phosphorylation cycle in vitro. Kageyama H; Nishiwaki T; Nakajima M; Iwasaki H; Oyama T; Kondo T Mol Cell; 2006 Jul; 23(2):161-71. PubMed ID: 16857583 [TBL] [Abstract][Full Text] [Related]
26. CryoEM and molecular dynamics of the circadian KaiB-KaiC complex indicates that KaiB monomers interact with KaiC and block ATP binding clefts. Villarreal SA; Pattanayek R; Williams DR; Mori T; Qin X; Johnson CH; Egli M; Stewart PL J Mol Biol; 2013 Sep; 425(18):3311-24. PubMed ID: 23796516 [TBL] [Abstract][Full Text] [Related]
27. Structural characterization of the circadian clock protein complex composed of KaiB and KaiC by inverse contrast-matching small-angle neutron scattering. Sugiyama M; Yagi H; Ishii K; Porcar L; Martel A; Oyama K; Noda M; Yunoki Y; Murakami R; Inoue R; Sato N; Oba Y; Terauchi K; Uchiyama S; Kato K Sci Rep; 2016 Oct; 6():35567. PubMed ID: 27752127 [TBL] [Abstract][Full Text] [Related]
28. Diversity of KaiC-based timing systems in marine Cyanobacteria. Axmann IM; Hertel S; Wiegard A; Dörrich AK; Wilde A Mar Genomics; 2014 Apr; 14():3-16. PubMed ID: 24388874 [TBL] [Abstract][Full Text] [Related]
29. Hypersensitive photic responses and intact genome-wide transcriptional control without the KaiC phosphorylation cycle in the Synechococcus circadian system. Umetani M; Hosokawa N; Kitayama Y; Iwasaki H J Bacteriol; 2014 Feb; 196(3):548-55. PubMed ID: 24244001 [TBL] [Abstract][Full Text] [Related]
30. Assembly and disassembly dynamics of the cyanobacterial periodosome. Akiyama S; Nohara A; Ito K; Maéda Y Mol Cell; 2008 Mar; 29(6):703-16. PubMed ID: 18342562 [TBL] [Abstract][Full Text] [Related]
31. ATPase activity and its temperature compensation of the cyanobacterial clock protein KaiC. Murakami R; Miyake A; Iwase R; Hayashi F; Uzumaki T; Ishiura M Genes Cells; 2008 Apr; 13(4):387-95. PubMed ID: 18363969 [TBL] [Abstract][Full Text] [Related]
32. Attenuation of the posttranslational oscillator via transcription-translation feedback enhances circadian-phase shifts in Synechococcus. Hosokawa N; Kushige H; Iwasaki H Proc Natl Acad Sci U S A; 2013 Aug; 110(35):14486-91. PubMed ID: 23940358 [TBL] [Abstract][Full Text] [Related]
33. An arginine tetrad as mediator of input-dependent and input-independent ATPases in the clock protein KaiC. Pattanayek R; Xu Y; Lamichhane A; Johnson CH; Egli M Acta Crystallogr D Biol Crystallogr; 2014 May; 70(Pt 5):1375-90. PubMed ID: 24816106 [TBL] [Abstract][Full Text] [Related]
34. Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942. Nishiwaki T; Satomi Y; Nakajima M; Lee C; Kiyohara R; Kageyama H; Kitayama Y; Temamoto M; Yamaguchi A; Hijikata A; Go M; Iwasaki H; Takao T; Kondo T Proc Natl Acad Sci U S A; 2004 Sep; 101(38):13927-32. PubMed ID: 15347812 [TBL] [Abstract][Full Text] [Related]
35. Phase-dependent generation and transmission of time information by the KaiABC circadian clock oscillator through SasA-KaiC interaction in cyanobacteria. Valencia S J; Bitou K; Ishii K; Murakami R; Morishita M; Onai K; Furukawa Y; Imada K; Namba K; Ishiura M Genes Cells; 2012 May; 17(5):398-419. PubMed ID: 22512339 [TBL] [Abstract][Full Text] [Related]
36. Stability and lability of circadian period of gene expression in the cyanobacterium Synechococcus elongatus. Clerico EM; Cassone VM; Golden SS Microbiology (Reading); 2009 Feb; 155(Pt 2):635-641. PubMed ID: 19202112 [TBL] [Abstract][Full Text] [Related]
37. Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence. Wiegard A; Dörrich AK; Deinzer HT; Beck C; Wilde A; Holtzendorff J; Axmann IM Microbiology (Reading); 2013 May; 159(Pt 5):948-958. PubMed ID: 23449916 [TBL] [Abstract][Full Text] [Related]
38. Detecting KaiC phosphorylation rhythms of the cyanobacterial circadian oscillator in vitro and in vivo. Kim YI; Boyd JS; Espinosa J; Golden SS Methods Enzymol; 2015; 551():153-73. PubMed ID: 25662456 [TBL] [Abstract][Full Text] [Related]
39. Monitoring Protein-Protein Interactions in the Cyanobacterial Circadian Clock in Real Time via Electron Paramagnetic Resonance Spectroscopy. Chow GK; Chavan AG; Heisler JC; Chang YG; LiWang A; Britt RD Biochemistry; 2020 Jul; 59(26):2387-2400. PubMed ID: 32453554 [TBL] [Abstract][Full Text] [Related]
40. Structural and biophysical methods to analyze clock function and mechanism. Egli M Methods Enzymol; 2015; 551():223-66. PubMed ID: 25662460 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]