These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28331204)

  • 41. A gain-of-function mutation in IAA7/AXR2 confers late flowering under short-day light in Arabidopsis.
    Mai YX; Wang L; Yang HQ
    J Integr Plant Biol; 2011 Jun; 53(6):480-92. PubMed ID: 21564544
    [TBL] [Abstract][Full Text] [Related]  

  • 42. LEAFY controls Arabidopsis pedicel length and orientation by affecting adaxial-abaxial cell fate.
    Yamaguchi N; Yamaguchi A; Abe M; Wagner D; Komeda Y
    Plant J; 2012 Mar; 69(5):844-56. PubMed ID: 22050454
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A gene triggering flower formation in Arabidopsis.
    Mandel MA; Yanofsky MF
    Nature; 1995 Oct; 377(6549):522-4. PubMed ID: 7566148
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana.
    Chang YY; Chiu YF; Wu JW; Yang CH
    Plant Cell Physiol; 2009 Aug; 50(8):1425-38. PubMed ID: 19541596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize.
    Vernoud V; Laigle G; Rozier F; Meeley RB; Perez P; Rogowsky PM
    Plant J; 2009 Sep; 59(6):883-94. PubMed ID: 19453441
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Transcriptional programs regulated by both LEAFY and APETALA1 at the time of flower formation.
    Winter CM; Yamaguchi N; Wu MF; Wagner D
    Physiol Plant; 2015 Sep; 155(1):55-73. PubMed ID: 26096587
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A conserved domain in the N-terminus is important for LEAFY dimerization and function in Arabidopsis thaliana.
    Siriwardana NS; Lamb RS
    Plant J; 2012 Sep; 71(5):736-49. PubMed ID: 22507399
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Identification and characterization of the flower meristem identity gene MhyLFY in mycoheterotrophic plant Monotropa hypopitys.
    Shchennikova AV; Shulga OA; Beletsky AV; Filyushin MA; Kochieva EZ; Ravin NV; Skryabin KG
    Dokl Biochem Biophys; 2017 May; 474(1):204-208. PubMed ID: 28726096
    [TBL] [Abstract][Full Text] [Related]  

  • 49. [Interaction of the BRACTEA gene with the TERMINAL FLOWER1, LEAFY, and APETALA1 genes during inflorescence and flower development in Arabidopsis thaliana].
    Penin AA; Budaev RA; Ezhova TA
    Genetika; 2007 Mar; 43(3):370-6. PubMed ID: 17486756
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Functional analysis of flower development related gene GsLFY from Glycine soja.
    Guo WY; Cui YM; Wang TT; Yu DY; Huang F
    Yi Chuan; 2017 Jan; 39(1):56-65. PubMed ID: 28115306
    [TBL] [Abstract][Full Text] [Related]  

  • 51. AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals.
    Yu H; Xu Y; Tan EL; Kumar PP
    Proc Natl Acad Sci U S A; 2002 Dec; 99(25):16336-41. PubMed ID: 12451184
    [TBL] [Abstract][Full Text] [Related]  

  • 52. RoTFL1c of Rosa multiflora has a dual-function in suppressing reproductive growth and promoting vegetative growth of Arabidopsis.
    Wang F; Lian L; Liu Y; Zhang Y; Fang R; Liu Q
    Sci China Life Sci; 2018 Dec; 61(12):1599-1601. PubMed ID: 27530411
    [No Abstract]   [Full Text] [Related]  

  • 53. C/D class MADS box genes from two monocots, orchid (Oncidium Gower Ramsey) and lily (Lilium longiflorum), exhibit different effects on floral transition and formation in Arabidopsis thaliana.
    Hsu HF; Hsieh WP; Chen MK; Chang YY; Yang CH
    Plant Cell Physiol; 2010 Jun; 51(6):1029-45. PubMed ID: 20395287
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Current progress in orchid flowering/flower development research.
    Wang HM; Tong CG; Jang S
    Plant Signal Behav; 2017 May; 12(5):e1322245. PubMed ID: 28448202
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular characterization and functional analysis of a Flowering locus T homolog gene from a Phalaenopsis orchid.
    Li DM; L FB; Zhu GF; Sun YB; Liu HL; Liu JW; Wang Z
    Genet Mol Res; 2014 Aug; 13(3):5982-94. PubMed ID: 25117357
    [TBL] [Abstract][Full Text] [Related]  

  • 56. SQUAMOSA-PROMOTER BINDING PROTEIN 1 initiates flowering in Antirrhinum majus through the activation of meristem identity genes.
    Preston JC; Hileman LC
    Plant J; 2010 May; 62(4):704-12. PubMed ID: 20202170
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Molecular evolution of the transcription factor LEAFY in Brassicaceae.
    Baum DA; Yoon HS; Oldham RL
    Mol Phylogenet Evol; 2005 Oct; 37(1):1-14. PubMed ID: 16112883
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Photoperiodic regulation of flowering in perennial ryegrass involving a CONSTANS -like homolog.
    Martin J; Storgaard M; Andersen CH; Nielsen KK
    Plant Mol Biol; 2004 Sep; 56(2):159-69. PubMed ID: 15604735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Three TFL1 homologues regulate floral initiation in the biofuel plant Jatropha curcas.
    Li C; Fu Q; Niu L; Luo L; Chen J; Xu ZF
    Sci Rep; 2017 Feb; 7():43090. PubMed ID: 28225036
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia.
    Kazama Y; Fujiwara MT; Koizumi A; Nishihara K; Nishiyama R; Kifune E; Abe T; Kawano S
    Plant Cell Physiol; 2009 Jun; 50(6):1127-41. PubMed ID: 19406862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.