These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
513 related articles for article (PubMed ID: 28331309)
1. In vitro and in vivo drug release and antibacterial properties of the novel vancomycin-loaded bone-like hydroxyapatite/poly amino acid scaffold. Cao Z; Jiang D; Yan L; Wu J Int J Nanomedicine; 2017; 12():1841-1851. PubMed ID: 28331309 [TBL] [Abstract][Full Text] [Related]
2. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold. Cao Z; Jiang D; Yan L; Wu J J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585 [TBL] [Abstract][Full Text] [Related]
3. Biosafety of the Novel Vancomycin-loaded Bone-like Hydroxyapatite/Poly-amino Acid Bony Scaffold. Cao ZD; Jiang DM; Yan L; Wu J Chin Med J (Engl); 2016 Jan; 129(2):194-9. PubMed ID: 26830991 [TBL] [Abstract][Full Text] [Related]
4. Treatment of Staphylococcus aureus-induced chronic osteomyelitis with bone-like hydroxyapatite/poly amino acid loaded with rifapentine microspheres. Yan L; Jiang DM; Cao ZD; Wu J; Wang X; Wang ZL; Li YJ; Yi YF Drug Des Devel Ther; 2015; 9():3665-76. PubMed ID: 26213463 [TBL] [Abstract][Full Text] [Related]
5. A biodegradable antibiotic-eluting PLGA nanofiber-loaded deproteinized bone for treatment of infected rabbit bone defects. Gao J; Huang G; Liu G; Liu Y; Chen Q; Ren L; Chen C; Ding Z J Biomater Appl; 2016 Aug; 31(2):241-9. PubMed ID: 27288462 [TBL] [Abstract][Full Text] [Related]
6. Release characteristics of bone‑like hydroxyapatite/poly amino acid loaded with rifapentine microspheres in vivo. Liu Y; Zhu J; Jiang D Mol Med Rep; 2017 Aug; 16(2):1425-1430. PubMed ID: 28627673 [TBL] [Abstract][Full Text] [Related]
7. A dual PMMA/calcium sulfate carrier of vancomycin is more effective than PMMA-vancomycin at inhibiting Staphylococcus aureus growth in vitro. Luo S; Jiang T; Long L; Yang Y; Yang X; Luo L; Li J; Chen Z; Zou C; Luo S FEBS Open Bio; 2020 Apr; 10(4):552-560. PubMed ID: 32052585 [TBL] [Abstract][Full Text] [Related]
8. Improvement of the antibacterial activity of daptomycin-loaded polymeric microparticles by Eudragit RL 100: an assessment by isothermal microcalorimetry. Ferreira IS; Bettencourt A; Bétrisey B; Gonçalves LM; Trampuz A; Almeida AJ Int J Pharm; 2015 May; 485(1-2):171-82. PubMed ID: 25772414 [TBL] [Abstract][Full Text] [Related]
9. Effectiveness of hydroxyapatite-vancomycin bone cement in the treatment of Staphylococcus aureus induced chronic osteomyelitis. Joosten U; Joist A; Gosheger G; Liljenqvist U; Brandt B; von Eiff C Biomaterials; 2005 Sep; 26(25):5251-8. PubMed ID: 15792552 [TBL] [Abstract][Full Text] [Related]
11. In vitro antibacterial activity of bioactive glass S53P4 on multiresistant pathogens causing osteomyelitis and prosthetic joint infection. Cunha MT; Murça MA; Nigro S; Klautau GB; Salles MJC BMC Infect Dis; 2018 Apr; 18(1):157. PubMed ID: 29614973 [TBL] [Abstract][Full Text] [Related]
12. Evaluation of antibacterial activity and cytocompatibility of ciprofloxacin loaded gelatin-hydroxyapatite scaffolds as a local drug delivery system for osteomyelitis treatment. Krishnan AG; Jayaram L; Biswas R; Nair M Tissue Eng Part A; 2015 Apr; 21(7-8):1422-31. PubMed ID: 25567452 [TBL] [Abstract][Full Text] [Related]
13. In vitro and in vivo efficacies of teicoplanin-loaded calcium sulfate for treatment of chronic methicillin-resistant Staphylococcus aureus osteomyelitis. Jia WT; Luo SH; Zhang CQ; Wang JQ Antimicrob Agents Chemother; 2010 Jan; 54(1):170-6. PubMed ID: 19917757 [TBL] [Abstract][Full Text] [Related]
14. Alendronate-decorated biodegradable polymeric micelles for potential bone-targeted delivery of vancomycin. Cong Y; Quan C; Liu M; Liu J; Huang G; Tong G; Yin Y; Zhang C; Jiang Q J Biomater Sci Polym Ed; 2015; 26(11):629-43. PubMed ID: 25994241 [TBL] [Abstract][Full Text] [Related]
15. In vitro activities of daptomycin-, vancomycin-, and teicoplanin-loaded polymethylmethacrylate against methicillin-susceptible, methicillin-resistant, and vancomycin-intermediate strains of Staphylococcus aureus. Chang Y; Chen WC; Hsieh PH; Chen DW; Lee MS; Shih HN; Ueng SW Antimicrob Agents Chemother; 2011 Dec; 55(12):5480-4. PubMed ID: 21930872 [TBL] [Abstract][Full Text] [Related]
16. Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. Hemmati J; Chiani M; Asghari B; Roshanaei G; Soleimani Asl S; Shafiei M; Arabestani MR BMC Biotechnol; 2024 Jul; 24(1):47. PubMed ID: 38978013 [TBL] [Abstract][Full Text] [Related]
17. Determining potential of PMMA as a depot for rifampin to treat recalcitrant orthopaedic infections. Shiels SM; Tennent DJ; Akers KS; Wenke JC Injury; 2017 Oct; 48(10):2095-2100. PubMed ID: 28842287 [TBL] [Abstract][Full Text] [Related]
18. Biodegradable nanocomposite fibrous scaffold mediated local delivery of vancomycin for the treatment of MRSA infected experimental osteomyelitis. Krishnan AG; Biswas R; Menon D; Nair MB Biomater Sci; 2020 May; 8(9):2653-2665. PubMed ID: 32249281 [TBL] [Abstract][Full Text] [Related]
19. Study of bone-like hydroxyapatite/polyamino acid composite materials for their biological properties and effects on the reconstruction of long bone defects. Yan L; Jiang DM Drug Des Devel Ther; 2015; 9():6497-508. PubMed ID: 26719675 [TBL] [Abstract][Full Text] [Related]
20. Addition of ceftaroline fosamil or vancomycin to PMMA: An in vitro comparison of biomechanical properties and anti-MRSA efficacy. Haseeb A; Ajit Singh V; Teh CSJ; Loke MF J Orthop Surg (Hong Kong); 2019; 27(2):2309499019850324. PubMed ID: 31138005 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]