These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 28331546)

  • 1. Increasing phosphorus recovery from dewatering centrate in microbial electrolysis cells.
    Yuan P; Kim Y
    Biotechnol Biofuels; 2017; 10():70. PubMed ID: 28331546
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell.
    Cusick RD; Ullery ML; Dempsey BA; Logan BE
    Water Res; 2014 May; 54():297-306. PubMed ID: 24583521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficient phosphorus recovery as struvite by microbial electrolysis cell with stainless steel cathode: Struvite purity and experimental factors.
    Tai Y; Wang L; Hu Z; Dang Y; Guo Y; Ji X; Hu W; Li M
    Sci Total Environ; 2022 Oct; 843():156914. PubMed ID: 35753464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using mass struvite precipitation to remove recalcitrant nutrients and micropollutants from anaerobic digestion dewatering centrate.
    Abel-Denee M; Abbott T; Eskicioglu C
    Water Res; 2018 Apr; 132():292-300. PubMed ID: 29334648
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced struvite generation and separation by magnesium anode electrolysis coupled with cathode electrodeposition.
    Wang L; Gu K; Zhang Y; Sun J; Gu Z; Zhao B; Hu C
    Sci Total Environ; 2022 Jan; 804():150101. PubMed ID: 34517320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phosphate recovery as struvite within a single chamber microbial electrolysis cell.
    Cusick RD; Logan BE
    Bioresour Technol; 2012 Mar; 107():110-5. PubMed ID: 22212692
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting the potential of sludge dewatering liquors to recover nutrients as struvite biominerals.
    Simoes F; Colston R; Rosa-Fernandes C; Vale P; Stephenson T; Soares A
    Environ Sci Ecotechnol; 2020 Jul; 3():100052. PubMed ID: 36159601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Concurrent hydrogen production and phosphorus recovery in dual chamber microbial electrolysis cell.
    Almatouq A; Babatunde AO
    Bioresour Technol; 2017 Aug; 237():193-203. PubMed ID: 28254344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The microbial synergy and response mechanisms of hydrolysis-acidification combined microbial electrolysis cell system with stainless-steel cathode for textile-dyeing wastewater treatment.
    Xie J; Zou X; Chang Y; Xie J; Liu H; Cui MH; Zhang TC; Chen C
    Sci Total Environ; 2023 Jan; 855():158912. PubMed ID: 36162577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sustainable phosphorus recovery from wastewater and fertilizer production in microbial electrolysis cells using the biochar-based cathode.
    Ji X; Liu X; Yang W; Xu T; Wang X; Zhang X; Wang L; Mao X; Wang X
    Sci Total Environ; 2022 Feb; 807(Pt 2):150881. PubMed ID: 34627919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determining the feasibility of phosphorus recovery as struvite from filter press centrate in a secondary wastewater treatment plant.
    Fattah KP; Mavinic DS; Koch FA; Jacob C
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Jun; 43(7):756-64. PubMed ID: 18444078
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cadmium (II) removal mechanisms in microbial electrolysis cells.
    Colantonio N; Kim Y
    J Hazard Mater; 2016 Jul; 311():134-41. PubMed ID: 26970043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative evaluation of effects of different cathode materials on performance in Cd(II)-reduced microbial electrolysis cells.
    Zhou R; Zhou S; He C
    Bioresour Technol; 2020 Jul; 307():123198. PubMed ID: 32217438
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stacked multi-electrode design of microbial electrolysis cells for rapid and low-sludge treatment of municipal wastewater.
    Guo H; Kim Y
    Biotechnol Biofuels; 2019; 12():23. PubMed ID: 30774711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioelectrochemical acidolysis of magnesia to induce struvite crystallization for recovering phosphorus from aqueous solution.
    Wang Z; Zhang J; Guan X; She L; Xiang P; Xia S; Zhang Z
    J Environ Sci (China); 2019 Nov; 85():119-128. PubMed ID: 31471018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.
    Jordaan EM; Ackerman J; Cicek N
    Water Sci Technol; 2010; 61(12):3228-34. PubMed ID: 20555221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influences of electrode distance and electrolysis time on phosphorus precipitation and composition during electrolysis of anaerobic digestion effluent.
    Takabe Y; Fujiyama M; Yamasaki Y; Masuda T
    Sci Total Environ; 2022 Jan; 803():150114. PubMed ID: 34525711
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal and recovery of phosphorus as struvite from swine wastewater using microbial fuel cell.
    Ichihashi O; Hirooka K
    Bioresour Technol; 2012 Jun; 114():303-7. PubMed ID: 22445264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solutions to a combined problem of excessive hydrogen sulfide in biogas and struvite scaling.
    Charles W; Cord-Ruwisch R; Ho G; Costa M; Spencer P
    Water Sci Technol; 2006; 53(6):203-10. PubMed ID: 16749459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Energy recovery from tubular microbial electrolysis cell with stainless steel mesh as cathode.
    Ma X; Li Z; Zhou A; Yue X
    R Soc Open Sci; 2017 Dec; 4(12):170967. PubMed ID: 29308237
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.