These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 28331573)

  • 21. Combining phylogenetic and syntenic analyses for understanding the evolution of TCP ECE genes in eudicots.
    Citerne HL; Le Guilloux M; Sannier J; Nadot S; Damerval C
    PLoS One; 2013; 8(9):e74803. PubMed ID: 24019982
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Two AGAMOUS-like MADS-box genes from Taihangia rupestris (Rosaceae) reveal independent trajectories in the evolution of class C and class D floral homeotic functions.
    Lü S; Du X; Lu W; Chong K; Meng Z
    Evol Dev; 2007; 9(1):92-104. PubMed ID: 17227369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Assessing duplication and loss of APETALA1/FRUITFULL homologs in Ranunculales.
    Pabón-Mora N; Hidalgo O; Gleissberg S; Litt A
    Front Plant Sci; 2013; 4():358. PubMed ID: 24062757
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Floral MADS-box protein interactions in the early diverging angiosperm Aristolochia fimbriata Cham. (Aristolochiaceae: Piperales).
    Peréz-Mesa P; Suárez-Baron H; Ambrose BA; González F; Pabón-Mora N
    Evol Dev; 2019 Mar; 21(2):96-110. PubMed ID: 30734997
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Arabidopsis myc/bHLH gene ALCATRAZ enables cell separation in fruit dehiscence.
    Rajani S; Sundaresan V
    Curr Biol; 2001 Dec; 11(24):1914-22. PubMed ID: 11747817
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evidence that an evolutionary transition from dehiscent to indehiscent fruits in Lepidium (Brassicaceae) was caused by a change in the control of valve margin identity genes.
    Mühlhausen A; Lenser T; Mummenhoff K; Theißen G
    Plant J; 2013 Mar; 73(5):824-35. PubMed ID: 23173897
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional diversification of B MADS-box homeotic regulators of flower development: Adaptive evolution in protein-protein interaction domains after major gene duplication events.
    Hernández-Hernández T; Martínez-Castilla LP; Alvarez-Buylla ER
    Mol Biol Evol; 2007 Feb; 24(2):465-81. PubMed ID: 17135333
    [TBL] [Abstract][Full Text] [Related]  

  • 28. 'Living stones' reveal alternative petal identity programs within the core eudicots.
    Brockington SF; Rudall PJ; Frohlich MW; Oppenheimer DG; Soltis PS; Soltis DE
    Plant J; 2012 Jan; 69(2):193-203. PubMed ID: 21951031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Flower Development and Perianth Identity Candidate Genes in the Basal Angiosperm Aristolochia fimbriata (Piperales: Aristolochiaceae).
    Pabón-Mora N; Suárez-Baron H; Ambrose BA; González F
    Front Plant Sci; 2015; 6():1095. PubMed ID: 26697047
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tinkering with transcription factor networks for developmental robustness of Ranunculales flowers.
    Becker A
    Ann Bot; 2016 Apr; 117(5):845-58. PubMed ID: 27091506
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Expansion and Functional Divergence of the SHORT VEGETATIVE PHASE (SVP) Genes in Eudicots.
    Liu X; Sun Z; Dong W; Wang Z; Zhang L
    Genome Biol Evol; 2018 Nov; 10(11):3026-3037. PubMed ID: 30364940
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Conservation and divergence in the AGAMOUS subfamily of MADS-box genes: evidence of independent sub- and neofunctionalization events.
    Zahn LM; Leebens-Mack JH; Arrington JM; Hu Y; Landherr LL; dePamphilis CW; Becker A; Theissen G; Ma H
    Evol Dev; 2006; 8(1):30-45. PubMed ID: 16409381
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes.
    Becker A; Kaufmann K; Freialdenhoven A; Vincent C; Li MA; Saedler H; Theissen G
    Mol Genet Genomics; 2002 Feb; 266(6):942-50. PubMed ID: 11862488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional conservation between CRABS CLAW orthologues from widely diverged angiosperms.
    Fourquin C; Vinauger-Douard M; Chambrier P; Berne-Dedieu A; Scutt CP
    Ann Bot; 2007 Sep; 100(3):651-7. PubMed ID: 17650514
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of the APETALA2 Gene Lineage in Seed Plants.
    Zumajo-Cardona C; Pabón-Mora N
    Mol Biol Evol; 2016 Jul; 33(7):1818-32. PubMed ID: 27030733
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Expression patterns of STM-like KNOX and Histone H4 genes in shoot development of the dissected-leaved basal eudicot plants Chelidonium majus and Eschscholzia californica (Papaveraceae).
    Groot EP; Sinha N; Gleissberg S
    Plant Mol Biol; 2005 Jun; 58(3):317-31. PubMed ID: 16021398
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Floral development of Berberidopsis corallina: a crucial link in the evolution of flowers in the core Eudicots.
    Ronse DE Craene LP
    Ann Bot; 2004 Nov; 94(5):741-51. PubMed ID: 15451722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Functional conservation and diversification of class E floral homeotic genes in rice (Oryza sativa).
    Cui R; Han J; Zhao S; Su K; Wu F; Du X; Xu Q; Chong K; Theissen G; Meng Z
    Plant J; 2010 Mar; 61(5):767-81. PubMed ID: 20003164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of
    Gomariz-Fernández A; Sánchez-Gerschon V; Fourquin C; Ferrándiz C
    Front Plant Sci; 2017; 8():814. PubMed ID: 28588595
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The Aquilegia FRUITFULL-like genes play key roles in leaf morphogenesis and inflorescence development.
    Pabón-Mora N; Sharma B; Holappa LD; Kramer EM; Litt A
    Plant J; 2013 Apr; 74(2):197-212. PubMed ID: 23294330
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.