These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 28332081)

  • 1. Modeling of the morphological change of cellulose microfibrils caused with aqueous NaOH solution: the longitudinal contraction and laterally swelling during decrystallization.
    Nakano T
    J Mol Model; 2017 Apr; 23(4):129. PubMed ID: 28332081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of mercerization process based on the intensity change of deconvoluted resonances of (13)C CP/MAS NMR: Cellulose mercerized under cooling and non-cooling conditions.
    Miura K; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():189-95. PubMed ID: 26042706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Periodic disorder along ramie cellulose microfibrils.
    Nishiyama Y; Kim UJ; Kim DY; Katsumata KS; May RP; Langan P
    Biomacromolecules; 2003; 4(4):1013-7. PubMed ID: 12857086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular directionality in cellulose polymorphs.
    Kim NH; Imai T; Wada M; Sugiyama J
    Biomacromolecules; 2006 Jan; 7(1):274-80. PubMed ID: 16398525
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of drying of chara cellulose on length/length distribution of microfibrils after acid hydrolysis.
    Horikawa Y; Shimizu M; Saito T; Isogai A; Imai T; Sugiyama J
    Int J Biol Macromol; 2018 Apr; 109():569-575. PubMed ID: 29225180
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the polymorphic and morphological changes of cellulose nanocrystals (CNC-I) upon mercerization and conversion to CNC-II.
    Jin E; Guo J; Yang F; Zhu Y; Song J; Jin Y; Rojas OJ
    Carbohydr Polym; 2016 Jun; 143():327-35. PubMed ID: 27083376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The mechanism of formation of Cellulose-like microfibrils in a cell-free system from Acetobacter xylinum.
    Colvin JR
    Planta; 1980 Jul; 149(2):97-107. PubMed ID: 24306238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of crystallinity changes in cellulose II polymers using carbohydrate-binding modules.
    Široký J; Benians TA; Russell SJ; Bechtold T; Paul Knox J; Blackburn RS
    Carbohydr Polym; 2012 Jun; 89(1):213-21. PubMed ID: 24750626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-level origins of biomass recalcitrance: decrystallization free energies for four common cellulose polymorphs.
    Beckham GT; Matthews JF; Peters B; Bomble YJ; Himmel ME; Crowley MF
    J Phys Chem B; 2011 Apr; 115(14):4118-27. PubMed ID: 21425804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pretreatment by NaOH swelling and then HCl regeneration to enhance the acid hydrolysis of cellulose to glucose.
    Sun B; Peng G; Duan L; Xu A; Li X
    Bioresour Technol; 2015 Nov; 196():454-8. PubMed ID: 26280097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A priori crystal structure prediction of native celluloses.
    Viëtor RJ; Mazeau K; Lakin M; Pérez S
    Biopolymers; 2000 Oct; 54(5):342-54. PubMed ID: 10935974
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The microcrystalline structure of cellulose in cell walls of cotton, ramie, and jute fibers as revealed by negative staining of sections.
    Heyn AN
    J Cell Biol; 1966 May; 29(2):181-97. PubMed ID: 4164010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Side-chain motion of components in wood samples partially non-crystallized using NaOH-water solution.
    Tanimoto T; Nakano T
    Mater Sci Eng C Mater Biol Appl; 2013 Apr; 33(3):1236-41. PubMed ID: 23827566
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation.
    Clair B; Alméras T; Yamamoto H; Okuyama T; Sugiyama J
    Biophys J; 2006 Aug; 91(3):1128-35. PubMed ID: 16698777
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Unraveling cellulose microfibrils: a twisted tale.
    Hadden JA; French AD; Woods RJ
    Biopolymers; 2013 Oct; 99(10):746-56. PubMed ID: 23681971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cellulose microfibril twist, mechanics, and implication for cellulose biosynthesis.
    Zhao Z; Shklyaev OE; Nili A; Mohamed MN; Kubicki JD; Crespi VH; Zhong L
    J Phys Chem A; 2013 Mar; 117(12):2580-9. PubMed ID: 23418823
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enzymatic hydrolysis and recrystallization behavior of initially amorphous cellulose.
    Bertran MS; Dale BE
    Biotechnol Bioeng; 1985 Feb; 27(2):177-81. PubMed ID: 18553653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure study of cellulose fibers wet-spun from environmentally friendly NaOH/urea aqueous solutions.
    Chen X; Burger C; Wan F; Zhang J; Rong L; Hsiao BS; Chu B; Cai J; Zhang L
    Biomacromolecules; 2007 Jun; 8(6):1918-26. PubMed ID: 17472335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Organization of pectic arabinan and galactan side chains in association with cellulose microfibrils in primary cell walls and related models envisaged.
    Zykwinska A; Thibault JF; Ralet MC
    J Exp Bot; 2007; 58(7):1795-802. PubMed ID: 17383990
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermolecular interactions and 3D structure in cellulose-NaOH-urea aqueous system.
    Jiang Z; Fang Y; Xiang J; Ma Y; Lu A; Kang H; Huang Y; Guo H; Liu R; Zhang L
    J Phys Chem B; 2014 Aug; 118(34):10250-7. PubMed ID: 25111839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.