These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
235 related articles for article (PubMed ID: 28332198)
1. Trace metals transfer during vine cultivation and winemaking processes. Vystavna Y; Zaichenko L; Klimenko N; Rätsep R J Sci Food Agric; 2017 Oct; 97(13):4520-4525. PubMed ID: 28332198 [TBL] [Abstract][Full Text] [Related]
2. Trace metals in wine and vineyard environment in southern Ukraine. Vystavna Y; Rushenko L; Diadin D; Klymenko O; Klymenko M Food Chem; 2014 Mar; 146():339-44. PubMed ID: 24176352 [TBL] [Abstract][Full Text] [Related]
3. Multielement composition of wines and their precursors including provenance soil and their potentialities as fingerprints of wine origin. Almeida CM; Vasconcelos MT J Agric Food Chem; 2003 Jul; 51(16):4788-98. PubMed ID: 14705914 [TBL] [Abstract][Full Text] [Related]
4. Influence of different mineral and Organic pesticide treatments on Cd(II), Cu(II), Pb(II), and Zn(II) contents determined by derivative potentiometric stripping analysis in Italian white and red wines. Salvo F; La Pera L; Di Bella G; Nicotina M; Dugo G J Agric Food Chem; 2003 Feb; 51(4):1090-4. PubMed ID: 12568578 [TBL] [Abstract][Full Text] [Related]
5. Species-dependent effect of cover cropping on trace elements and nutrients in vineyard soil and Vitis. Vystavna Y; Schmidt SI; Klimenko OE; Plugatar YV; Klimenko NI; Klimenko NN J Sci Food Agric; 2020 Jan; 100(2):885-890. PubMed ID: 31483055 [TBL] [Abstract][Full Text] [Related]
6. Factors affecting distribution and mobility of trace elements (Cu, Pb, Zn) in a perennial grapevine (Vitis vinifera L.) in the Champagne region of France. Chopin EI; Marin B; Mkoungafoko R; Rigaux A; Hopgood MJ; Delannoy E; Cancès B; Laurain M Environ Pollut; 2008 Dec; 156(3):1092-8. PubMed ID: 18550238 [TBL] [Abstract][Full Text] [Related]
7. Multi-Elemental Analysis of Wine Samples in Relation to Their Type, Origin, and Grape Variety. Gajek M; Pawlaczyk A; Szynkowska-Jozwik MI Molecules; 2021 Jan; 26(1):. PubMed ID: 33406611 [TBL] [Abstract][Full Text] [Related]
8. Lead contamination in Portuguese red wines from the Douro region: from the vineyard to the final product. Almeida CM; Vasconcelos MT J Agric Food Chem; 2003 May; 51(10):3012-23. PubMed ID: 12720385 [TBL] [Abstract][Full Text] [Related]
9. The influence of the winemaking process on the elemental composition of the Marselan red wine. Dos Santos CE; Debastiani R; Souza VS; Peretti DE; Jobim PF; Yoneama ML; Amaral L; Dias JF J Sci Food Agric; 2019 Aug; 99(10):4642-4650. PubMed ID: 30895630 [TBL] [Abstract][Full Text] [Related]
10. Differential absorption of metals from soil to diverse vine varieties from the Valley of Tulum (Argentina): consequences to evaluate wine provenance. Fabani MP; Toro ME; Vázquez F; Díaz MP; Wunderlin DA J Agric Food Chem; 2009 Aug; 57(16):7409-16. PubMed ID: 19645479 [TBL] [Abstract][Full Text] [Related]
11. Response of wine grape growth, development and the transfer of copper, lead, and cadmium in soil-fruit system to sludge compost amendment. Liu HT; Wang YW; Huang WD; Lei M Environ Sci Pollut Res Int; 2016 Dec; 23(23):24230-24236. PubMed ID: 27646451 [TBL] [Abstract][Full Text] [Related]
12. Metal contamination of vineyard soils in wet subtropics (southern Brazil). Mirlean N; Roisenberg A; Chies JO Environ Pollut; 2007 Sep; 149(1):10-7. PubMed ID: 17321651 [TBL] [Abstract][Full Text] [Related]
13. Vertical distribution and analysis of micro-, macroelements and heavy metals in the system soil-grapevine-wine in vineyard from North-West Romania. Bora FD; Bunea CI; Rusu T; Pop N Chem Cent J; 2015; 9():19. PubMed ID: 25883678 [TBL] [Abstract][Full Text] [Related]
14. Region, vintage, and grape maturity co-shaped the ionomic signatures of the Cabernet Sauvignon wines. Han X; Lu HC; Wang Y; Gao XT; Li HQ; Tian MB; Shi N; Li MY; Yang XL; He F; Duan CQ; Wang J Food Res Int; 2023 Jan; 163():112165. PubMed ID: 36596113 [TBL] [Abstract][Full Text] [Related]
15. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) anthocyanins. 2. Anthocyanins and pigmented polymers in wine. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2007 Aug; 55(16):6585-95. PubMed ID: 17636934 [TBL] [Abstract][Full Text] [Related]
17. Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. Cortell JM; Halbleib M; Gallagher AV; Righetti TL; Kennedy JA J Agric Food Chem; 2005 Jul; 53(14):5798-808. PubMed ID: 15998151 [TBL] [Abstract][Full Text] [Related]
18. The role of soil chemistry in wine grape quality and sustainable soil management in vineyards. Mackenzie DE; Christy AG Water Sci Technol; 2005; 51(1):27-37. PubMed ID: 15771096 [TBL] [Abstract][Full Text] [Related]
19. Influence of vineyard location and vine water status on fruit maturation of nonirrigated cv. Agiorgitiko (Vitis vinifera L.). Effects on wine phenolic and aroma components. Koundouras S; Marinos V; Gkoulioti A; Kotseridis Y; van Leeuwen C J Agric Food Chem; 2006 Jul; 54(14):5077-86. PubMed ID: 16819919 [TBL] [Abstract][Full Text] [Related]
20. Investigation of the copper contents in vineyard soil, grape must and wine and the relationship among them in the Huaizhuo Basin Region, China: A preliminary study. Sun X; Ma T; Yu J; Huang W; Fang Y; Zhan J Food Chem; 2018 Feb; 241():40-50. PubMed ID: 28958546 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]