BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 28332714)

  • 1. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature.
    Nocella M; Cecchi G; Colombini B
    J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of temperature on crossbridge force changes during fatigue and recovery in intact mouse muscle fibers.
    Nocella M; Cecchi G; Bagni MA; Colombini B
    PLoS One; 2013; 8(10):e78918. PubMed ID: 24147145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Post-exercise recovery of contractile function and endurance in humans and mice is accelerated by heating and slowed by cooling skeletal muscle.
    Cheng AJ; Willis SJ; Zinner C; Chaillou T; Ivarsson N; Ørtenblad N; Lanner JT; Holmberg HC; Westerblad H
    J Physiol; 2017 Dec; 595(24):7413-7426. PubMed ID: 28980321
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of myoplasmic phosphate in contractile function of skeletal muscle: studies on creatine kinase-deficient mice.
    Dahlstedt AJ; Katz A; Westerblad H
    J Physiol; 2001 Jun; 533(Pt 2):379-88. PubMed ID: 11389199
    [TBL] [Abstract][Full Text] [Related]  

  • 5. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro.
    Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM
    J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Activation dependence and kinetics of force and stiffness inhibition by aluminiofluoride, a slowly dissociating analogue of inorganic phosphate, in chemically skinned fibres from rabbit psoas muscle.
    Chase PB; Martyn DA; Hannon JD
    J Muscle Res Cell Motil; 1994 Apr; 15(2):119-29. PubMed ID: 8051286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Force generation induced by rapid temperature jumps in intact mammalian (rat) skeletal muscle fibres.
    Coupland ME; Ranatunga KW
    J Physiol; 2003 Apr; 548(Pt 2):439-49. PubMed ID: 12611915
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms underlying phosphate-induced failure of Ca2+ release in single skinned skeletal muscle fibres of the rat.
    Posterino GS; Fryer MW
    J Physiol; 1998 Oct; 512 ( Pt 1)(Pt 1):97-108. PubMed ID: 9729620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of ATP in the regulation of intracellular Ca2+ release in single fibres of mouse skeletal muscle.
    Allen DG; Lännergren J; Westerblad H
    J Physiol; 1997 Feb; 498 ( Pt 3)(Pt 3):587-600. PubMed ID: 9051572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of caged adenine nucleotides and caged phosphate in intact skeletal muscle fibres of the mouse.
    Allen DG; Lännergren J; Westerblad H
    Acta Physiol Scand; 1999 Aug; 166(4):341-7. PubMed ID: 10610612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of the tension responses to ramp shortening and lengthening in intact mammalian muscle fibres: crossbridge and non-crossbridge contributions.
    Roots H; Offer GW; Ranatunga KW
    J Muscle Res Cell Motil; 2007; 28(2-3):123-39. PubMed ID: 17610136
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Endothermic force generation, temperature-jump experiments and effects of increased [MgADP] in rabbit psoas muscle fibres.
    Coupland ME; Pinniger GJ; Ranatunga KW
    J Physiol; 2005 Sep; 567(Pt 2):471-92. PubMed ID: 15975981
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular step(s) of force generation: temperature-perturbation experiments on muscle fibres.
    Ranatunga KW; Coupland ME
    Adv Exp Med Biol; 2003; 538():441-57; discussion 457. PubMed ID: 15098690
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Can inorganic phosphate explain sag during unfused tetanic contractions of skeletal muscle?
    Smith IC; Bellissimo C; Herzog W; Tupling AR
    Physiol Rep; 2016 Nov; 4(22):. PubMed ID: 27884960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of inorganic phosphate on the force and number of myosin cross-bridges during the isometric contraction of permeabilized muscle fibers from rabbit psoas.
    Caremani M; Dantzig J; Goldman YE; Lombardi V; Linari M
    Biophys J; 2008 Dec; 95(12):5798-808. PubMed ID: 18835889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Myofibrillar fatigue versus failure of activation during repetitive stimulation of frog muscle fibres.
    Edman KA; Lou F
    J Physiol; 1992 Nov; 457():655-73. PubMed ID: 1297847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An asymmetry in the phosphate dependence of tension transients induced by length perturbation in mammalian (rabbit psoas) muscle fibres.
    Ranatunga KW; Coupland ME; Mutungi G
    J Physiol; 2002 Aug; 542(Pt 3):899-910. PubMed ID: 12154187
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle contraction and fatigue. The role of adenosine 5'-diphosphate and inorganic phosphate.
    McLester JR
    Sports Med; 1997 May; 23(5):287-305. PubMed ID: 9181667
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Depletion of phosphate in active muscle fibers probes actomyosin states within the powerstroke.
    Pate E; Franks-Skiba K; Cooke R
    Biophys J; 1998 Jan; 74(1):369-80. PubMed ID: 9449337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of solution tonicity on crossbridge properties and myosin lever arm disposition in intact frog muscle fibres.
    Colombini B; Bagni MA; Cecchi G; Griffiths PJ
    J Physiol; 2007 Jan; 578(Pt 1):337-46. PubMed ID: 17023505
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.