These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 28333121)
1. Glycerol Production and Transformation: A Critical Review with Particular Emphasis on Glycerol Reforming Reaction for Producing Hydrogen in Conventional and Membrane Reactors. Bagnato G; Iulianelli A; Sanna A; Basile A Membranes (Basel); 2017 Mar; 7(2):. PubMed ID: 28333121 [TBL] [Abstract][Full Text] [Related]
2. A Review of the CFD Modeling of Hydrogen Production in Catalytic Steam Reforming Reactors. Ghasem N Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555702 [TBL] [Abstract][Full Text] [Related]
3. Progress in Methanol Steam Reforming Modelling via Membrane Reactors Technology. Iulianelli A; Ghasemzadeh K; Basile A Membranes (Basel); 2018 Aug; 8(3):. PubMed ID: 30126137 [TBL] [Abstract][Full Text] [Related]
4. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification. Castro-Dominguez B; Mardilovich IP; Ma LC; Ma R; Dixon AG; Kazantzis NK; Ma YH Membranes (Basel); 2016 Sep; 6(3):. PubMed ID: 27657143 [TBL] [Abstract][Full Text] [Related]
5. Steam reforming of biodiesel by-product to make renewable hydrogen. Slinn M; Kendall K; Mallon C; Andrews J Bioresour Technol; 2008 Sep; 99(13):5851-8. PubMed ID: 18032034 [TBL] [Abstract][Full Text] [Related]
6. Recent Advances in Bimetallic Catalysts for Methane Steam Reforming in Hydrogen Production: Current Trends, Challenges, and Future Prospects. Yusuf BO; Umar M; Kotob E; Abdulhakam A; Taialla OA; Awad MM; Hussain I; Alhooshani KR; Ganiyu SA Chem Asian J; 2024 Aug; 19(16):e202300641. PubMed ID: 37740712 [TBL] [Abstract][Full Text] [Related]
7. Renewable H2 from glycerol steam reforming: effect of La2O3 and CeO2 addition to Pt/Al2O3 catalysts. Montini T; Singh R; Das P; Lorenzut B; Bertero N; Riello P; Benedetti A; Giambastiani G; Bianchini C; Zinoviev S; Miertus S; Fornasiero P ChemSusChem; 2010 May; 3(5):619-28. PubMed ID: 20422673 [TBL] [Abstract][Full Text] [Related]
8. Catalytic reforming of oxygenated hydrocarbons for the hydrogen production: an outlook. Azizan MT; Aqsha A; Ameen M; Syuhada A; Klaus H; Abidin SZ; Sher F Biomass Convers Biorefin; 2020 Oct; ():1-24. PubMed ID: 33110738 [TBL] [Abstract][Full Text] [Related]
9. Producing hydrogen by catalytic steam reforming of methanol using non-noble metal catalysts. Deng Y; Li S; Appels L; Dewil R; Zhang H; Baeyens J; Mikulcic H J Environ Manage; 2022 Nov; 321():116019. PubMed ID: 36029634 [TBL] [Abstract][Full Text] [Related]
10. Steam reforming of crude glycerol with in situ CO(2) sorption. Dou B; Rickett GL; Dupont V; Williams PT; Chen H; Ding Y; Ghadiri M Bioresour Technol; 2010 Apr; 101(7):2436-42. PubMed ID: 19945865 [TBL] [Abstract][Full Text] [Related]
11. High yields of hydrogen production from methanol steam reforming with a cross-U type reactor. Zhang S; Zhang Y; Chen J; Zhang X; Liu X PLoS One; 2017; 12(11):e0187802. PubMed ID: 29121067 [TBL] [Abstract][Full Text] [Related]
12. Advances in Methanol Production and Utilization, with Particular Emphasis toward Hydrogen Generation via Membrane Reactor Technology. Dalena F; Senatore A; Basile M; Knani S; Basile A; Iulianelli A Membranes (Basel); 2018 Oct; 8(4):. PubMed ID: 30340434 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of Glycerol Steam Reforming for Hydrogen Production Over Ni-Fe-Ce/Al₂O₃ Catalysts. Ryoo H; Go GS; Ma BC; Kim YC J Nanosci Nanotechnol; 2018 Feb; 18(2):1070-1073. PubMed ID: 29448534 [TBL] [Abstract][Full Text] [Related]
14. Methanol Steam Reforming for Hydrogen Production over Ni-Based Catalysts: State-Of-The-Art Review and Future Prospects. Hu B; Shu R; Khairun HS; Tian Z; Wang C; Kumar Gupta N Chem Asian J; 2024 Aug; 19(16):e202400217. PubMed ID: 38752326 [TBL] [Abstract][Full Text] [Related]
15. Catalysts for Hydrogen Generation via Oxy-Steam Reforming of Methanol Process. Mosińska M; Szynkowska-Jóźwik MI; Mierczyński P Materials (Basel); 2020 Dec; 13(24):. PubMed ID: 33302526 [TBL] [Abstract][Full Text] [Related]
16. Hydrogen production by sorption-enhanced steam reforming of glycerol. Dou B; Dupont V; Rickett G; Blakeman N; Williams PT; Chen H; Ding Y; Ghadiri M Bioresour Technol; 2009 Jul; 100(14):3540-7. PubMed ID: 19318245 [TBL] [Abstract][Full Text] [Related]
17. Bimetallic PtSn/C catalysts obtained via SOMC/M for glycerol steam reforming. Pastor-Pérez L; Merlo A; Buitrago-Sierra R; Casella M; Sepúlveda-Escribano A J Colloid Interface Sci; 2015 Dec; 459():160-166. PubMed ID: 26283100 [TBL] [Abstract][Full Text] [Related]
18. Preparation and Characterization of Ni Nanostructures Coated on the Substrates for Glycerol Steam Reforming. Kim T; Park D J Nanosci Nanotechnol; 2017 Apr; 17(4):2478-481. PubMed ID: 29648770 [TBL] [Abstract][Full Text] [Related]
19. Glycerol Steam Reforming Over Ni-Fe-Ce/Al2O3 Catalyst: Effect of Cerium. Go GS; Go YJ; Lee HJ; Moon DJ; Park NC; Kim YC J Nanosci Nanotechnol; 2016 Feb; 16(2):1855-8. PubMed ID: 27433687 [TBL] [Abstract][Full Text] [Related]
20. Practical achievements on biomass steam gasification in a rotary tubular coiled-downdraft reactor. Andrew R; Gokak DT; Sharma P; Gupta S Waste Manag Res; 2016 Dec; 34(12):1268-1274. PubMed ID: 27495911 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]