These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 28333171)

  • 1. Dual dimensional nanostructures with highly durable non-wetting properties under dynamic and underwater conditions.
    Baek S; Kim W; Jeon S; Yong K
    Nanoscale; 2017 May; 9(20):6665-6673. PubMed ID: 28333171
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of liquid droplet surface tension on impact dynamics over hierarchical nanostructure surfaces.
    Baek S; Moon HS; Kim W; Jeon S; Yong K
    Nanoscale; 2018 Sep; 10(37):17842-17851. PubMed ID: 30221273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Two types of Cassie-to-Wenzel wetting transitions on superhydrophobic surfaces during drop impact.
    Lee C; Nam Y; Lastakowski H; Hur JI; Shin S; Biance AL; Pirat C; Kim CJ; Ybert C
    Soft Matter; 2015 Jun; 11(23):4592-9. PubMed ID: 25959867
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of fluid flow on the stability and wetting transition of submerged superhydrophobic surfaces.
    Xiang Y; Xue Y; Lv P; Li D; Duan H
    Soft Matter; 2016 May; 12(18):4241-6. PubMed ID: 27071538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructures increase water droplet adhesion on hierarchically rough superhydrophobic surfaces.
    Teisala H; Tuominen M; Aromaa M; Stepien M; Mäkelä JM; Saarinen JJ; Toivakka M; Kuusipalo J
    Langmuir; 2012 Feb; 28(6):3138-45. PubMed ID: 22263866
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metastable states and wetting transition of submerged superhydrophobic structures.
    Lv P; Xue Y; Shi Y; Lin H; Duan H
    Phys Rev Lett; 2014 May; 112(19):196101. PubMed ID: 24877948
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamic effects of bouncing water droplets on superhydrophobic surfaces.
    Jung YC; Bhushan B
    Langmuir; 2008 Jun; 24(12):6262-9. PubMed ID: 18479153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Following the wetting of one-dimensional photoactive surfaces.
    Macias-Montero M; Borras A; Alvarez R; Gonzalez-Elipe AR
    Langmuir; 2012 Oct; 28(42):15047-55. PubMed ID: 22998211
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Superhydrophobic Breakdown of Nanostructured Surfaces Characterized in Situ Using ATR-FTIR.
    Vrancken N; Sergeant S; Vereecke G; Doumen G; Holsteyns F; Terryn H; De Gendt S; Xu X
    Langmuir; 2017 Apr; 33(15):3601-3609. PubMed ID: 28335608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role and significance of wetting pressures during droplet impact on structured superhydrophobic surfaces.
    Murugadoss K; Dhar P; Das SK
    Eur Phys J E Soft Matter; 2017 Jan; 40(1):1. PubMed ID: 28083793
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Control over wettability of polyethylene glycol surfaces using capillary lithography.
    Suh KY; Jon S
    Langmuir; 2005 Jul; 21(15):6836-41. PubMed ID: 16008394
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermediate States of Wetting on Hierarchical Superhydrophobic Surfaces.
    Rofman B; Dehe S; Frumkin V; Hardt S; Bercovici M
    Langmuir; 2020 May; 36(20):5517-5523. PubMed ID: 32337996
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Time-Dependent Wetting Behavior of PDMS Surfaces with Bioinspired, Hierarchical Structures.
    Mishra H; Schrader AM; Lee DW; Gallo A; Chen SY; Kaufman Y; Das S; Israelachvili JN
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):8168-74. PubMed ID: 26709928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Progress in understanding wetting transitions on rough surfaces.
    Bormashenko E
    Adv Colloid Interface Sci; 2015 Aug; 222():92-103. PubMed ID: 24594103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of geometric patterns of microstructured superhydrophobic surfaces on water-harvesting performance via dewing.
    Seo D; Lee C; Nam Y
    Langmuir; 2014 Dec; 30(51):15468-76. PubMed ID: 25466626
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spontaneous recovery of superhydrophobicity on nanotextured surfaces.
    Prakash S; Xi E; Patel AJ
    Proc Natl Acad Sci U S A; 2016 May; 113(20):5508-13. PubMed ID: 27140619
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How to make the Cassie wetting state stable?
    Whyman G; Bormashenko E
    Langmuir; 2011 Jul; 27(13):8171-6. PubMed ID: 21644550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wetting on nanoporous alumina surface: transition between Wenzel and Cassie states controlled by surface structure.
    Ran C; Ding G; Liu W; Deng Y; Hou W
    Langmuir; 2008 Sep; 24(18):9952-5. PubMed ID: 18702472
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.