BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 28333201)

  • 1. New Statistical Criteria Detect Phylogenetic Bias Caused by Compositional Heterogeneity.
    Duchêne DA; Duchêne S; Ho SYW
    Mol Biol Evol; 2017 Jun; 34(6):1529-1534. PubMed ID: 28333201
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Differences in Performance among Test Statistics for Assessing Phylogenomic Model Adequacy.
    Duchêne DA; Duchêne S; Ho SYW
    Genome Biol Evol; 2018 Jun; 10(6):1375-1388. PubMed ID: 29788113
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Base compositional bias and phylogenetic analyses: a test of the "flying DNA" hypothesis.
    Van Den Bussche RA; Baker RJ; Huelsenbeck JP; Hillis DM
    Mol Phylogenet Evol; 1998 Dec; 10(3):408-16. PubMed ID: 10051393
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mitochondrial phylogenomics of early land plants: mitigating the effects of saturation, compositional heterogeneity, and codon-usage bias.
    Liu Y; Cox CJ; Wang W; Goffinet B
    Syst Biol; 2014 Nov; 63(6):862-78. PubMed ID: 25070972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compositional heterogeneity and phylogenomic inference of metazoan relationships.
    Nesnidal MP; Helmkampf M; Bruchhaus I; Hausdorf B
    Mol Biol Evol; 2010 Sep; 27(9):2095-104. PubMed ID: 20382658
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Base-compositional heterogeneity in the RAG1 locus among didelphid marsupials: implications for phylogenetic inference and the evolution of GC content.
    Gruber KF; Voss RS; Jansa SA
    Syst Biol; 2007 Feb; 56(1):83-96. PubMed ID: 17366139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the correlation between composition and site-specific evolutionary rate: implications for phylogenetic inference.
    Gowri-Shankar V; Rattray M
    Mol Biol Evol; 2006 Feb; 23(2):352-64. PubMed ID: 16237207
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Heterogeneity of nucleotide frequencies among evolutionary lineages and phylogenetic inference.
    Rosenberg MS; Kumar S
    Mol Biol Evol; 2003 Apr; 20(4):610-21. PubMed ID: 12679548
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Artifactual phylogenies caused by correlated distribution of substitution rates among sites and lineages: the good, the bad, and the ugly.
    Ruano-Rubio V; Fares MA
    Syst Biol; 2007 Feb; 56(1):68-82. PubMed ID: 17366138
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The Prevalence and Impact of Model Violations in Phylogenetic Analysis.
    Naser-Khdour S; Minh BQ; Zhang W; Stone EA; Lanfear R
    Genome Biol Evol; 2019 Dec; 11(12):3341-3352. PubMed ID: 31536115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamically heterogenous partitions and phylogenetic inference: an evaluation of analytical strategies with cytochrome b and ND6 gene sequences in cranes.
    Krajewski C; Fain MG; Buckley L; King DG
    Mol Phylogenet Evol; 1999 Nov; 13(2):302-13. PubMed ID: 10603258
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonstationary evolution and compositional heterogeneity in beetle mitochondrial phylogenomics.
    Sheffield NC; Song H; Cameron SL; Whiting MF
    Syst Biol; 2009 Aug; 58(4):381-94. PubMed ID: 20525592
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of nucleotide composition bias on the success of the parsimony criterion in phylogenetic inference.
    Conant GC; Lewis PO
    Mol Biol Evol; 2001 Jun; 18(6):1024-33. PubMed ID: 11371591
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic evolution of base composition: causes and consequences in avian phylogenomics.
    Nabholz B; Künstner A; Wang R; Jarvis ED; Ellegren H
    Mol Biol Evol; 2011 Aug; 28(8):2197-210. PubMed ID: 21393604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonhomogeneous model of sequence evolution indicates independent origins of primary endosymbionts within the enterobacteriales (gamma-Proteobacteria).
    Herbeck JT; Degnan PH; Wernegreen JJ
    Mol Biol Evol; 2005 Mar; 22(3):520-32. PubMed ID: 15525700
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phylogenetic Analysis That Models Compositional Heterogeneity over the Tree.
    Foster PG
    Methods Mol Biol; 2022; 2569():119-135. PubMed ID: 36083446
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recoding Amino Acids to a Reduced Alphabet may Increase or Decrease Phylogenetic Accuracy.
    Foster PG; Schrempf D; Szöllősi GJ; Williams TA; Cox CJ; Embley TM
    Syst Biol; 2023 Jun; 72(3):723-737. PubMed ID: 35713492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Efficient inference on known phylogenetic trees using Poisson regression.
    Rosset S
    Bioinformatics; 2007 Jan; 23(2):e142-7. PubMed ID: 17237083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mixture models of nucleotide sequence evolution that account for heterogeneity in the substitution process across sites and across lineages.
    Jayaswal V; Wong TK; Robinson J; Poladian L; Jermiin LS
    Syst Biol; 2014 Sep; 63(5):726-42. PubMed ID: 24927722
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tests of applicability of several substitution models for DNA sequence data.
    Rzhetsky A; Nei M
    Mol Biol Evol; 1995 Jan; 12(1):131-51. PubMed ID: 7877488
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.