BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 28333345)

  • 21. Positive Selection in Gene Regulatory Factors Suggests Adaptive Pleiotropic Changes During Human Evolution.
    Jovanovic VM; Sarfert M; Reyna-Blanco CS; Indrischek H; Valdivia DI; Shelest E; Nowick K
    Front Genet; 2021; 12():662239. PubMed ID: 34079582
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robust inference of positive selection on regulatory sequences in the human brain.
    Liu J; Robinson-Rechavi M
    Sci Adv; 2020 Nov; 6(48):. PubMed ID: 33246961
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Developmental constraint shaped genome evolution and erythrocyte loss in Antarctic fishes following paleoclimate change.
    Daane JM; Auvinet J; Stoebenau A; Yergeau D; Harris MP; Detrich HW
    PLoS Genet; 2020 Oct; 16(10):e1009173. PubMed ID: 33108368
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genes and genomes and unnecessary complexity in precision medicine.
    Singh RS; Gupta BP
    NPJ Genom Med; 2020; 5():21. PubMed ID: 32377378
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptive selection in the evolution of programmed cell death-1 and its ligands in vertebrates.
    Ahmad HI; Zhou J; Ahmad MJ; Afzal G; Jiang H; Zhang X; Elokil AA; Khan MA; Li L; Li H; Ping L; Chen J
    Aging (Albany NY); 2020 Feb; 12(4):3516-3557. PubMed ID: 32045365
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A multiscale approach to detect selection in nonmodel tree species: Widespread adaptation despite population decline in
    Mayol M; Riba M; Cavers S; Grivet D; Vincenot L; Cattonaro F; Vendramin GG; González-Martínez SC
    Evol Appl; 2020 Jan; 13(1):143-160. PubMed ID: 31892949
    [TBL] [Abstract][Full Text] [Related]  

  • 27. What can be learned by scanning the genome for molecular convergence in wild populations?
    Fraser BA; Whiting JR
    Ann N Y Acad Sci; 2020 Sep; 1476(1):23-42. PubMed ID: 31241191
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter.
    Beichman AC; Koepfli KP; Li G; Murphy W; Dobrynin P; Kliver S; Tinker MT; Murray MJ; Johnson J; Lindblad-Toh K; Karlsson EK; Lohmueller KE; Wayne RK
    Mol Biol Evol; 2019 Dec; 36(12):2631-2655. PubMed ID: 31212313
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Historical contingency shapes adaptive radiation in Antarctic fishes.
    Daane JM; Dornburg A; Smits P; MacGuigan DJ; Brent Hawkins M; Near TJ; William Detrich Iii H; Harris MP
    Nat Ecol Evol; 2019 Jul; 3(7):1102-1109. PubMed ID: 31182814
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Comparative genomics provides new insights into the remarkable adaptations of the African wild dog (Lycaon pictus).
    Chavez DE; Gronau I; Hains T; Kliver S; Koepfli KP; Wayne RK
    Sci Rep; 2019 Jun; 9(1):8329. PubMed ID: 31171819
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-Scale Comparative Analysis of Codon Models Accounting for Protein and Nucleotide Selection.
    Davydov II; Salamin N; Robinson-Rechavi M
    Mol Biol Evol; 2019 Jun; 36(6):1316-1332. PubMed ID: 30847475
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Insights into the Genomics of Clownfish Adaptive Radiation: Genetic Basis of the Mutualism with Sea Anemones.
    Marcionetti A; Rossier V; Roux N; Salis P; Laudet V; Salamin N
    Genome Biol Evol; 2019 Mar; 11(3):869-882. PubMed ID: 30830203
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Adaptive Evolution of Animal Proteins over Development: Support for the Darwin Selection Opportunity Hypothesis of Evo-Devo.
    Liu J; Robinson-Rechavi M
    Mol Biol Evol; 2018 Dec; 35(12):2862-2872. PubMed ID: 30184095
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence of the Red-Queen Hypothesis from Accelerated Rates of Evolution of Genes Involved in Biotic Interactions in Pneumocystis.
    Delaye L; Ruiz-Ruiz S; Calderon E; Tarazona S; Conesa A; Moya A
    Genome Biol Evol; 2018 Jun; 10(6):1596-1606. PubMed ID: 29893833
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Pairwise comparisons across species are problematic when analyzing functional genomic data.
    Dunn CW; Zapata F; Munro C; Siebert S; Hejnol A
    Proc Natl Acad Sci U S A; 2018 Jan; 115(3):E409-E417. PubMed ID: 29301966
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inferring Rates and Length-Distributions of Indels Using Approximate Bayesian Computation.
    Levy Karin E; Shkedy D; Ashkenazy H; Cartwright RA; Pupko T
    Genome Biol Evol; 2017 May; 9(5):1280-1294. PubMed ID: 28453624
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Detection of Pathways Affected by Positive Selection in Primate Lineages Ancestral to Humans.
    Daub JT; Moretti S; Davydov II; Excoffier L; Robinson-Rechavi M
    Mol Biol Evol; 2017 Jun; 34(6):1391-1402. PubMed ID: 28333345
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural and functional implications of positive selection at the primate angiogenin gene.
    Osorio DS; Antunes A; Ramos MJ
    BMC Evol Biol; 2007 Sep; 7():167. PubMed ID: 17883850
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detecting positive selection within genomes: the problem of biased gene conversion.
    Ratnakumar A; Mousset S; Glémin S; Berglund J; Galtier N; Duret L; Webster MT
    Philos Trans R Soc Lond B Biol Sci; 2010 Aug; 365(1552):2571-80. PubMed ID: 20643747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Statistical properties of the branch-site test of positive selection.
    Yang Z; dos Reis M
    Mol Biol Evol; 2011 Mar; 28(3):1217-28. PubMed ID: 21087944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.