BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 28333345)

  • 41. A covarion-based method for detecting molecular adaptation: application to the evolution of primate mitochondrial genomes.
    Pupko T; Galtier N
    Proc Biol Sci; 2002 Jul; 269(1498):1313-6. PubMed ID: 12079652
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A whole genome long-range haplotype (WGLRH) test for detecting imprints of positive selection in human populations.
    Zhang C; Bailey DK; Awad T; Liu G; Xing G; Cao M; Valmeekam V; Retief J; Matsuzaki H; Taub M; Seielstad M; Kennedy GC
    Bioinformatics; 2006 Sep; 22(17):2122-8. PubMed ID: 16845142
    [TBL] [Abstract][Full Text] [Related]  

  • 43. POTION: an end-to-end pipeline for positive Darwinian selection detection in genome-scale data through phylogenetic comparison of protein-coding genes.
    Hongo JA; de Castro GM; Cintra LC; Zerlotini A; Lobo FP
    BMC Genomics; 2015 Aug; 16(1):567. PubMed ID: 26231214
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Positive directional selection in the proline-rich antigen (PRA) gene among the human pathogenic fungi Coccidioides immitis, C. posadasii and their closest relatives.
    Johannesson H; Vidal P; Guarro J; Herr RA; Cole GT; Taylor JW
    Mol Biol Evol; 2004 Jun; 21(6):1134-45. PubMed ID: 15034131
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Multiple hypothesis testing to detect lineages under positive selection that affects only a few sites.
    Anisimova M; Yang Z
    Mol Biol Evol; 2007 May; 24(5):1219-28. PubMed ID: 17339634
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Evidence of a Conserved Molecular Response to Selection for Increased Brain Size in Primates.
    Boddy AM; Harrison PW; Montgomery SH; Caravas JA; Raghanti MA; Phillips KA; Mundy NI; Wildman DE
    Genome Biol Evol; 2017 Mar; 9(3):700-713. PubMed ID: 28391320
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of lineage-specific evolutionary changes among primate species.
    Pertea M; Pertea GM; Salzberg SL
    BMC Bioinformatics; 2011 Jul; 12():274. PubMed ID: 21726447
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Evolution of Rh blood group genes have experienced gene conversions and positive selection.
    Kitano T; Saitou N
    J Mol Evol; 1999 Nov; 49(5):615-26. PubMed ID: 10552043
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Episodic evolution of growth hormone in primates and emergence of the species specificity of human growth hormone receptor.
    Liu JC; Makova KD; Adkins RM; Gibson S; Li WH
    Mol Biol Evol; 2001 Jun; 18(6):945-53. PubMed ID: 11371582
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Hearing Sensitivity of Primates: Recurrent and Episodic Positive Selection in Hair Cells and Stereocilia Protein-Coding Genes.
    Moreira A; Croze M; Delehelle F; Cussat-Blanc S; Luga H; Mollereau C; Balaresque P
    Genome Biol Evol; 2021 Aug; 13(8):. PubMed ID: 34137817
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Frequent false detection of positive selection by the likelihood method with branch-site models.
    Zhang J
    Mol Biol Evol; 2004 Jul; 21(7):1332-9. PubMed ID: 15014150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Evaluation of an improved branch-site likelihood method for detecting positive selection at the molecular level.
    Zhang J; Nielsen R; Yang Z
    Mol Biol Evol; 2005 Dec; 22(12):2472-9. PubMed ID: 16107592
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Class of multiple sequence alignment algorithm affects genomic analysis.
    Blackburne BP; Whelan S
    Mol Biol Evol; 2013 Mar; 30(3):642-53. PubMed ID: 23144040
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immune System Promiscuity in Human and Nonhuman Primate Evolution.
    Brinkworth JF; Babbitt CC
    Hum Biol; 2018 Nov; 90(4):251-269. PubMed ID: 31714693
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robust inference of positive selection from recombining coding sequences.
    Scheffler K; Martin DP; Seoighe C
    Bioinformatics; 2006 Oct; 22(20):2493-9. PubMed ID: 16895925
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Diversifying selection of the tumor-growth promoter angiogenin in primate evolution.
    Zhang J; Rosenberg HF
    Mol Biol Evol; 2002 Apr; 19(4):438-45. PubMed ID: 11919285
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C.
    Pierron D; Opazo JC; Heiske M; Papper Z; Uddin M; Chand G; Wildman DE; Romero R; Goodman M; Grossman LI
    PLoS One; 2011; 6(10):e26269. PubMed ID: 22028846
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-scale detection of positive selection in nine primates predicts human-virus evolutionary conflicts.
    van der Lee R; Wiel L; van Dam TJP; Huynen MA
    Nucleic Acids Res; 2017 Oct; 45(18):10634-10648. PubMed ID: 28977405
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Efficient Inference of Recent and Ancestral Recombination within Bacterial Populations.
    Mostowy R; Croucher NJ; Andam CP; Corander J; Hanage WP; Marttinen P
    Mol Biol Evol; 2017 May; 34(5):1167-1182. PubMed ID: 28199698
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Multigene analysis of phylogenetic relationships and divergence times of primate sucking lice (Phthiraptera: Anoplura).
    Light JE; Reed DL
    Mol Phylogenet Evol; 2009 Feb; 50(2):376-90. PubMed ID: 19027083
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.