These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 28333461)

  • 1. Suberin Fatty Acids from Outer Birch Bark: Isolation and Physical Material Characterization.
    Heinämäki J; Pirttimaa MM; Alakurtti S; Pitkänen HP; Kanerva H; Hulkko J; Paaver U; Aruväli J; Yliruusi J; Kogermann K
    J Nat Prod; 2017 Apr; 80(4):916-924. PubMed ID: 28333461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Suberin fatty acids isolated from outer birch bark improve moisture barrier properties of cellulose ether films intended for tablet coatings.
    Heinämäki J; Halenius A; Paavo M; Alakurtti S; Pitkänen P; Pirttimaa M; Paaver U; Kirsimäe K; Kogermann K; Yliruusi J
    Int J Pharm; 2015 Jul; 489(1-2):91-9. PubMed ID: 25936623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of Suberin Fatty Acids and Chloramphenicol-Loaded Antimicrobial Electrospun Nanofibrous Mats Intended for Wound Therapy.
    Tamm I; Heinämäki J; Laidmäe I; Rammo L; Paaver U; Ingebrigtsen SG; Škalko-Basnet N; Halenius A; Yliruusi J; Pitkänen P; Alakurtti S; Kogermann K
    J Pharm Sci; 2016 Mar; 105(3):1239-47. PubMed ID: 26886306
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unravelling the distinct crystallinity and thermal properties of suberin compounds from Quercus suber and Betula pendula outer barks.
    Sousa AF; Gandini A; Caetano A; Maria TM; Freire CS; Neto CP; Silvestre AJ
    Int J Biol Macromol; 2016 Dec; 93(Pt A):686-694. PubMed ID: 27632951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Hydrophobicity of Lignocellulosic Fiber Network Can Be Enhanced with Suberin Fatty Acids.
    Korpinen RI; Kilpeläinen P; Sarjala T; Nurmi M; Saloranta P; Holmbom T; Koivula H; Mikkonen KS; Willför S; Saranpää PT
    Molecules; 2019 Dec; 24(23):. PubMed ID: 31805659
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Different Pretreatment Methods on Birch Outer Bark: New Biorefinery Routes.
    Karnaouri A; Rova U; Christakopoulos P
    Molecules; 2016 Mar; 21(4):427. PubMed ID: 27043513
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface engineered excipients: II. Simultaneous milling and dry coating for preparation of fine-grade microcrystalline cellulose with enhanced properties.
    Chen L; Ding X; He Z; Fan S; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jul; 546(1-2):125-136. PubMed ID: 29763689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Novel multifunctional pharmaceutical excipients derived from microcrystalline cellulose-starch microparticulate composites prepared by compatibilized reactive polymer blending.
    Builders PF; Bonaventure AM; Tiwalade A; Okpako LC; Attama AA
    Int J Pharm; 2010 Mar; 388(1-2):159-67. PubMed ID: 20060448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Birch bark research and development.
    Krasutsky PA
    Nat Prod Rep; 2006 Dec; 23(6):919-42. PubMed ID: 17119640
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Denatured Whey Protein Powder as a New Matrix Excipient: Design and Evaluation of Mucoadhesive Tablets for Sustained Drug Release Applications.
    Hsein H; Garrait G; Tamani F; Beyssac E; Hoffart V
    Pharm Res; 2017 Feb; 34(2):365-377. PubMed ID: 28004316
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An experimental investigation of temperature rise during compaction of pharmaceutical powders.
    Krok A; Mirtic A; Reynolds GK; Schiano S; Roberts R; Wu CY
    Int J Pharm; 2016 Nov; 513(1-2):97-108. PubMed ID: 27601333
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analytical Method Cluster Development for Comprehensive Characterisation of Suberinic Acids Derived from Birch Outer Bark.
    Godina D; Makars R; Paze A; Rizhikovs J
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903473
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of excipients, drugs, and osmotic agent in the inner core on the time-controlled disintegration of compression-coated ethylcellulose tablets.
    Lin SY; Lin KH; Li MJ
    J Pharm Sci; 2002 Sep; 91(9):2040-6. PubMed ID: 12210050
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface engineered excipients: I. improved functional properties of fine grade microcrystalline cellulose.
    Chen L; Ding X; He Z; Huang Z; Kunnath KT; Zheng K; Davé RN
    Int J Pharm; 2018 Jan; 536(1):127-137. PubMed ID: 29191481
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A quality-by-design study for an immediate-release tablet platform: examining the relative impact of active pharmaceutical ingredient properties, processing methods, and excipient variability on drug product quality attributes.
    Kushner J; Langdon BA; Hicks I; Song D; Li F; Kathiria L; Kane A; Ranade G; Agarwal K
    J Pharm Sci; 2014 Feb; 103(2):527-38. PubMed ID: 24375069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of crustacean chitin as a co-diluent in direct compression of tablets.
    Mir VG; Heinämäki J; Antikainen O; Sandler N; Revoredo OB; Colarte AI; Nieto OM; Yliruusi J
    AAPS PharmSciTech; 2010 Mar; 11(1):409-15. PubMed ID: 20238188
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterizations of Alpha-Cellulose and Microcrystalline Cellulose Isolated from Cocoa Pod Husk as a Potential Pharmaceutical Excipient.
    Adeleye OA; Bamiro OA; Albalawi DA; Alotaibi AS; Iqbal H; Sanyaolu S; Femi-Oyewo MN; Sodeinde KO; Yahaya ZS; Thiripuranathar G; Menaa F
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079372
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative evaluation of the powder properties and compression behaviour of a new cellulose-based direct compression excipient and Avicel PH-102.
    Reus-Medina M; Lanz M; Kumar V; Leuenberger H
    J Pharm Pharmacol; 2004 Aug; 56(8):951-6. PubMed ID: 15285837
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fine granules showing sustained drug release prepared by high-shear melt granulation using triglycerin full behenate and milled microcrystalline cellulose.
    Aoki H; Iwao Y; Uchimoto T; Noguchi S; Kajihara R; Takahashi K; Ishida M; Terada Y; Suzuki Y; Itai S
    Int J Pharm; 2015 Jan; 478(2):530-9. PubMed ID: 25434591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Roller compaction of different pseudopolymorphic forms of theophylline: Effect on compressibility and tablet properties.
    Hadzović E; Betz G; Hadzidedić S; El-Arini SK; Leuenberger H
    Int J Pharm; 2010 Aug; 396(1-2):53-62. PubMed ID: 20600735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.