BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 28333463)

  • 1. Determination of the Absolute Configuration of a Monoglyceride Antibolting Compound and Isolation of Related Compounds from Radish Leaves (Raphanus sativus).
    Ogihara T; Amano N; Mitsui Y; Fujino K; Ohta H; Takahashi K; Matsuura H
    J Nat Prod; 2017 Apr; 80(4):872-878. PubMed ID: 28333463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Isolation and identification of an anti-bolting compound, hexadecatrienoic acid monoglyceride, responsible for inhibition of bolting and maintenance of the leaf rosette in radish plants.
    Yoshida Y; Takada N; Koda Y
    Plant Cell Physiol; 2010 Aug; 51(8):1341-9. PubMed ID: 20601431
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Isolation and Structure Determination of
    Hirota S; Ito Y; Inoue S; Kitaoka N; Taniguchi T; Monde K; Takahashi K; Matsuura H
    J Nat Prod; 2024 May; 87(5):1358-1367. PubMed ID: 38656153
    [No Abstract]   [Full Text] [Related]  

  • 4. Structure of a Precursor to the Blue Components Produced in the Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N
    J Nat Prod; 2016 May; 79(5):1381-7. PubMed ID: 27128155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Diffusive gradient in thin films technique for assessment of cadmium and copper bioaccessibility to radish (Raphanus sativus).
    Dočekalová H; Škarpa P; Dočekal B
    Talanta; 2015 Mar; 134():153-157. PubMed ID: 25618652
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Six new acylated anthocyanins from red radish (Raphanus sativus).
    Tamura S; Tsuji K; Yongzhen P; Ohnishi-Kameyama M; Murakami N
    Chem Pharm Bull (Tokyo); 2010 Sep; 58(9):1259-62. PubMed ID: 20823613
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monoglycerides from the brown alga Sargassum sagamianum: Isolation, synthesis, and biological activity.
    Chang HW; Jang KH; Lee D; Kang HR; Kim TY; Lee BH; Choi BW; Kim S; Shin J
    Bioorg Med Chem Lett; 2008 Jun; 18(12):3589-92. PubMed ID: 18487046
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism Underlying the Onset of Internal Blue Discoloration in Japanese Radish (Raphanus sativus) Roots.
    Teranishi K; Masayasu N; Masuda D
    J Agric Food Chem; 2016 Sep; 64(35):6745-51. PubMed ID: 27530819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification, expression, and functional analysis of CLE genes in radish (Raphanus sativus L.) storage root.
    Gancheva MS; Dodueva IE; Lebedeva MA; Tvorogova VE; Tkachenko AA; Lutova LA
    BMC Plant Biol; 2016 Jan; 16 Suppl 1(Suppl 1):7. PubMed ID: 26821718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 4-Methylthio-butanyl derivatives from the seeds of Raphanus sativus and their biological evaluation on anti-inflammatory and antitumor activities.
    Kim KH; Moon E; Kim SY; Choi SU; Lee JH; Lee KR
    J Ethnopharmacol; 2014; 151(1):503-8. PubMed ID: 24231071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of Cell Wall Composition of Radish (Raphanus sativus L. var. sativus) and Maturation Related Changes.
    Schäfer J; Brett A; Trierweiler B; Bunzel M
    J Agric Food Chem; 2016 Nov; 64(45):8625-8632. PubMed ID: 27744693
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Urgineaglyceride A: a new monoacylglycerol from the Egyptian Drimia maritima bulbs.
    Mohamed GA; Ibrahim SR; Shaala LA; Alshali KZ; Youssef DT
    Nat Prod Res; 2014; 28(19):1583-90. PubMed ID: 24938488
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root Glucosinolate Profiles for Screening of Radish (Raphanus sativus L.) Genetic Resources.
    Yi G; Lim S; Chae WB; Park JE; Park HR; Lee EJ; Huh JH
    J Agric Food Chem; 2016 Jan; 64(1):61-70. PubMed ID: 26672790
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of critical genes associated with lignin biosynthesis in radish (Raphanus sativus L.) by de novo transcriptome sequencing.
    Feng H; Xu L; Wang Y; Tang M; Zhu X; Zhang W; Sun X; Nie S; Muleke EM; Liu L
    Mol Genet Genomics; 2017 Oct; 292(5):1151-1163. PubMed ID: 28667404
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Raphanus sativus (Radish): their chemistry and biology.
    Gutiérrez RM; Perez RL
    ScientificWorldJournal; 2004 Sep; 4():811-37. PubMed ID: 15452648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isothiocyanate profile and selective antibacterial activity of root, stem, and leaf extracts derived from Raphanus sativus L.
    Beevi SS; Mangamoori LN; Dhand V; Ramakrishna DS
    Foodborne Pathog Dis; 2009; 6(1):129-36. PubMed ID: 19182965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissecting Root Proteome Changes Reveals New Insight into Cadmium Stress Response in Radish (Raphanus sativus L.).
    Xu L; Wang Y; Zhang F; Tang M; Chen Y; Wang J; Karanja BK; Luo X; Zhang W; Liu L
    Plant Cell Physiol; 2017 Nov; 58(11):1901-1913. PubMed ID: 29016946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PSII inhibitory activity of resorcinolic lipids from Sorghum bicolor.
    Rimando AM; Dayan FE; Streibig JC
    J Nat Prod; 2003 Jan; 66(1):42-5. PubMed ID: 12542343
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Methyl jasmonate affects morphology, number and activity of endoplasmic reticulum bodies in Raphanus sativus root cells.
    Gotté M; Ghosh R; Bernard S; Nguema-Ona E; Vicré-Gibouin M; Hara-Nishimura I; Driouich A
    Plant Cell Physiol; 2015 Jan; 56(1):61-72. PubMed ID: 25305245
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the Nutraceutical Potential of
    Manivannan A; Kim JH; Kim DS; Lee ES; Lee HE
    Nutrients; 2019 Feb; 11(2):. PubMed ID: 30769862
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 5.