These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Optimal classification for the diagnosis of duchenne muscular dystrophy images using support vector machines. Zhang MH; Ma JS; Shen Y; Chen Y Int J Comput Assist Radiol Surg; 2016 Sep; 11(9):1755-63. PubMed ID: 26476638 [TBL] [Abstract][Full Text] [Related]
6. Extended Polynomial Growth Transforms for Design and Training of Generalized Support Vector Machines. Gangopadhyay A; Chatterjee O; Chakrabartty S IEEE Trans Neural Netw Learn Syst; 2018 May; 29(5):1961-1974. PubMed ID: 28436898 [TBL] [Abstract][Full Text] [Related]
7. Predicting anti-trypanosome effect of carbazole-derived compounds by powerful SVM with novel kernel function and comprehensive learning PSO. Dong W; Zhang P Antimicrob Agents Chemother; 2024 Jul; 68(7):e0026524. PubMed ID: 38808999 [TBL] [Abstract][Full Text] [Related]
9. Capped Linex Metric Twin Support Vector Machine for Robust Classification. Wang Y; Yu G; Ma J Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081040 [TBL] [Abstract][Full Text] [Related]
10. Robust Multicategory Support Matrix Machines. Qian C; Tran-Dinh Q; Fu S; Zou C; Liu Y Math Program; 2019 Jul; 176(1-2):429-463. PubMed ID: 31983775 [TBL] [Abstract][Full Text] [Related]
11. Robust Multicategory Support Vector Machines using Difference Convex Algorithm. Zhang C; Pham M; Fu S; Liu Y Math Program; 2018 May; 169(1):277-305. PubMed ID: 29736090 [TBL] [Abstract][Full Text] [Related]
12. Robust Support Vector Machines for Classification with Nonconvex and Smooth Losses. Feng Y; Yang Y; Huang X; Mehrkanoon S; Suykens JA Neural Comput; 2016 Jun; 28(6):1217-47. PubMed ID: 27137357 [TBL] [Abstract][Full Text] [Related]
13. Face recognition using total margin-based adaptive fuzzy support vector machines. Liu YH; Chen YT IEEE Trans Neural Netw; 2007 Jan; 18(1):178-92. PubMed ID: 17278471 [TBL] [Abstract][Full Text] [Related]
14. DPWSS: differentially private working set selection for training support vector machines. Sun Z; Yang J; Li X; Zhang J PeerJ Comput Sci; 2021; 7():e799. PubMed ID: 34977353 [TBL] [Abstract][Full Text] [Related]
15. Noniterative Sparse LS-SVM Based on Globally Representative Point Selection. Ma Y; Liang X; Sheng G; Kwok JT; Wang M; Li G IEEE Trans Neural Netw Learn Syst; 2021 Feb; 32(2):788-798. PubMed ID: 32275614 [TBL] [Abstract][Full Text] [Related]
16. The construction of support vector machine classifier using the firefly algorithm. Chao CF; Horng MH Comput Intell Neurosci; 2015; 2015():212719. PubMed ID: 25802511 [TBL] [Abstract][Full Text] [Related]
17. Variable Selection for Support Vector Machines in Moderately High Dimensions. Zhang X; Wu Y; Wang L; Li R J R Stat Soc Series B Stat Methodol; 2016 Jan; 78(1):53-76. PubMed ID: 26778916 [TBL] [Abstract][Full Text] [Related]
18. Training sparse least squares support vector machines by the QR decomposition. Xia XL Neural Netw; 2018 Oct; 106():175-184. PubMed ID: 30075354 [TBL] [Abstract][Full Text] [Related]
19. A study on reduced support vector machines. Lin KM; Lin CJ IEEE Trans Neural Netw; 2003; 14(6):1449-59. PubMed ID: 18244590 [TBL] [Abstract][Full Text] [Related]
20. Utility-based Weighted Multicategory Robust Support Vector Machines. Liu Y; Wu Y; He Q Stat Interface; 2010 Oct; 3(4):465-476. PubMed ID: 23894688 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]