BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 28334006)

  • 21. Differentiating present-day from ancient bones by vibrational spectroscopy upon acetic acid treatment.
    Brandão ALC; Batista de Carvalho LAE; Gonçalves D; Piga G; Cunha E; Marques MPM
    Forensic Sci Int; 2023 Jun; 347():111690. PubMed ID: 37086578
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Revealing covariance structures in fourier transform infrared and Raman microspectroscopy spectra: a study on pork muscle fiber tissue subjected to different processing parameters.
    Böcker U; Ofstad R; Wu Z; Bertram HC; Sockalingum GD; Manfait M; Egelandsdal B; Kohler A
    Appl Spectrosc; 2007 Oct; 61(10):1032-9. PubMed ID: 17958951
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of ATR-FTIR spectroscopy and chemometrics for the discrimination of human bone remains from different archaeological sites in Turkey.
    Bayarı SH; Özdemir K; Sen EH; Araujo-Andrade C; Erdal YS
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug; 237():118311. PubMed ID: 32330809
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Diagnostic potential of near-infrared Raman spectroscopy in the stomach: differentiating dysplasia from normal tissue.
    Teh SK; Zheng W; Ho KY; Teh M; Yeoh KG; Huang Z
    Br J Cancer; 2008 Jan; 98(2):457-65. PubMed ID: 18195711
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The comparative performance of PMI estimation in skeletal remains by three methods (C-14, luminol test and OHI): analysis of 20 cases.
    Cappella A; Gibelli D; Muccino E; Scarpulla V; Cerutti E; Caruso V; Sguazza E; Mazzarelli D; Cattaneo C
    Int J Legal Med; 2018 Jul; 132(4):1215-1224. PubMed ID: 25619563
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Early detection of dental fluorosis using Raman spectroscopy and principal component analysis.
    González-Solís JL; Martínez-Cano E; Magaña-López Y
    Lasers Med Sci; 2015 Aug; 30(6):1675-81. PubMed ID: 25118662
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Forensic Proteomics for the Discovery of New
    Marrone A; La Russa D; Barberio L; Murfuni MS; Gaspari M; Pellegrino D
    Int J Mol Sci; 2023 Sep; 24(19):. PubMed ID: 37834074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics.
    Mickleburgh HL; Schwalbe EC; Bonicelli A; Mizukami H; Sellitto F; Starace S; Wescott DJ; Carter DO; Procopio N
    J Proteome Res; 2021 May; 20(5):2533-2546. PubMed ID: 33683123
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A novel analytical strategy for discriminating antibiotic mycelial residue adulteration in feed based on ATR-IR and microscopic infrared imaging.
    Li S; Fan X; Wu Y; Liao K; Huang Y; Han L; Liu X; Yang Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2021 Nov; 261():120060. PubMed ID: 34146828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The Spectroscopic Similarity between Breast Cancer Tissues and Lymph Nodes Obtained from Patients with and without Recurrence: A Preliminary Study.
    Depciuch J; Stanek-Widera A; Khinevich N; Bandarenka HV; Kandler M; Bayev V; Fedotova J; Lange D; Stanek-Tarkowska J; Cebulski J
    Molecules; 2020 Jul; 25(14):. PubMed ID: 32708082
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Collagen degradation as a possibility to determine the post-mortem interval (PMI) of animal bones: a validation study referring to an original study of Boaks et al. (2014).
    Jellinghaus K; Hachmann C; Hoeland K; Bohnert M; Wittwer-Backofen U
    Int J Legal Med; 2018 May; 132(3):753-763. PubMed ID: 29177807
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Signal-to-noise contribution of principal component loads in reconstructed near-infrared Raman tissue spectra.
    Grimbergen MC; van Swol CF; Kendall C; Verdaasdonk RM; Stone N; Bosch JL
    Appl Spectrosc; 2010 Jan; 64(1):8-14. PubMed ID: 20132590
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Towards refining Raman spectroscopy-based assessment of bone composition.
    Shah FA
    Sci Rep; 2020 Oct; 10(1):16662. PubMed ID: 33028904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).
    Velbel MA; Cockell CS; Glavin DP; Marty B; Regberg AB; Smith AL; Tosca NJ; Wadhwa M; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Agee CB; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Hutzler A; McCubbin FM; Pratt LM; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S112-S164. PubMed ID: 34904892
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Post-mortem interval estimation using miRNAs of road traffic accident cases: A forensic molecular approach.
    Singh P; Ali W; Sandhu S; Mishra S; Singh US; Verma AK; Singh M; Kaleem Ahmad M; Kumari S
    Sci Justice; 2023 Jul; 63(4):485-492. PubMed ID: 37453780
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Forensic proteomics for the evaluation of the post-mortem decay in bones.
    Procopio N; Williams A; Chamberlain AT; Buckley M
    J Proteomics; 2018 Apr; 177():21-30. PubMed ID: 29407476
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Post-mortem CT radiomics for the prediction of time since death.
    Klontzas ME; Leventis D; Spanakis K; Karantanas AH; Kranioti EF
    Eur Radiol; 2023 Nov; 33(11):8387-8395. PubMed ID: 37329460
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of meningioma brain tumour grades using Raman microspectroscopy imaging.
    Morais CLM; Lilo T; Ashton KM; Davis C; Dawson TP; Gurusinghe N; Martin FL
    Analyst; 2019 Nov; 144(23):7024-7031. PubMed ID: 31650137
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Role of DNA Degradation in the Estimation of Post-Mortem Interval: A Systematic Review of the Current Literature.
    Tozzo P; Scrivano S; Sanavio M; Caenazzo L
    Int J Mol Sci; 2020 May; 21(10):. PubMed ID: 32429539
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In situ analysis of mineral content and crystallinity in bone using infrared micro-spectroscopy of the nu(4) PO(4)(3-) vibration.
    Miller LM; Vairavamurthy V; Chance MR; Mendelsohn R; Paschalis EP; Betts F; Boskey AL
    Biochim Biophys Acta; 2001 Jul; 1527(1-2):11-9. PubMed ID: 11420138
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.