These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 28334077)

  • 1. A powerful and efficient two-stage method for detecting gene-to-gene interactions in GWAS.
    Pecanka J; Jonker MA; ; Bochdanovits Z; Van Der Vaart AW
    Biostatistics; 2017 Jul; 18(3):477-494. PubMed ID: 28334077
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gene, pathway and network frameworks to identify epistatic interactions of single nucleotide polymorphisms derived from GWAS data.
    Liu Y; Maxwell S; Feng T; Zhu X; Elston RC; Koyutürk M; Chance MR
    BMC Syst Biol; 2012; 6 Suppl 3(Suppl 3):S15. PubMed ID: 23281810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prioritizing tests of epistasis through hierarchical representation of genomic redundancies.
    Cowman T; Koyutürk M
    Nucleic Acids Res; 2017 Aug; 45(14):e131. PubMed ID: 28605458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gene-Gene Interactions Detection Using a Two-stage Model.
    Wang Z; Sul JH; Snir S; Lozano JA; Eskin E
    J Comput Biol; 2015 Jun; 22(6):563-76. PubMed ID: 25871811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. WISH-R- a fast and efficient tool for construction of epistatic networks for complex traits and diseases.
    Carmelo VAO; Kogelman LJA; Madsen MB; Kadarmideen HN
    BMC Bioinformatics; 2018 Jul; 19(1):277. PubMed ID: 30064383
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Tool for Detecting Complementary Single Nucleotide Polymorphism Pairs in Genome-Wide Association Studies for Epistasis Testing.
    Caylak G; Tastan O; Cicek AE
    J Comput Biol; 2021 Apr; 28(4):378-380. PubMed ID: 33325775
    [No Abstract]   [Full Text] [Related]  

  • 7. An Exhaustive Scan Method for SNP Main Effects and SNP × SNP Interactions Over Highly Homozygous Genomes.
    Tsai SF; Tung CW; Tsai CA; Liao CT
    J Comput Biol; 2017 Dec; 24(12):1254-1264. PubMed ID: 29099245
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Imperfect Linkage Disequilibrium Generates Phantom Epistasis (& Perils of Big Data).
    de Los Campos G; Sorensen DA; Toro MA
    G3 (Bethesda); 2019 May; 9(5):1429-1436. PubMed ID: 30877081
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EPIQ-efficient detection of SNP-SNP epistatic interactions for quantitative traits.
    Arkin Y; Rahmani E; Kleber ME; Laaksonen R; März W; Halperin E
    Bioinformatics; 2014 Jun; 30(12):i19-25. PubMed ID: 24931983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-Stage Testing for Epistasis: Screening and Verification.
    Pecanka J; Jonker MA
    Methods Mol Biol; 2021; 2212():69-92. PubMed ID: 33733351
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-throughput analysis of epistasis in genome-wide association studies with BiForce.
    Gyenesei A; Moody J; Semple CA; Haley CS; Wei WH
    Bioinformatics; 2012 Aug; 28(15):1957-64. PubMed ID: 22618535
    [TBL] [Abstract][Full Text] [Related]  

  • 12. COE: a general approach for efficient genome-wide two-locus epistasis test in disease association study.
    Zhang X; Pan F; Xie Y; Zou F; Wang W
    J Comput Biol; 2010 Mar; 17(3):401-15. PubMed ID: 20377453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An efficient algorithm to perform multiple testing in epistasis screening.
    Van Lishout F; Mahachie John JM; Gusareva ES; Urrea V; Cleynen I; Théâtre E; Charloteaux B; Calle ML; Wehenkel L; Van Steen K
    BMC Bioinformatics; 2013 Apr; 14():138. PubMed ID: 23617239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Epistasis Test in Meta-Analysis: A Multi-Parameter Markov Chain Monte Carlo Model for Consistency of Evidence.
    Lin C; Chu CM; Su SL
    PLoS One; 2016; 11(4):e0152891. PubMed ID: 27045371
    [TBL] [Abstract][Full Text] [Related]  

  • 15. IndOR: a new statistical procedure to test for SNP-SNP epistasis in genome-wide association studies.
    Emily M
    Stat Med; 2012 Sep; 31(21):2359-73. PubMed ID: 22711278
    [TBL] [Abstract][Full Text] [Related]  

  • 16. KDSNP: A kernel-based approach to detecting high-order SNP interactions.
    Kodama K; Saigo H
    J Bioinform Comput Biol; 2016 Oct; 14(5):1644003. PubMed ID: 27806683
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A mixed two-stage method for detecting interactions in genomewide association studies.
    Zuo Y; Kang G
    J Theor Biol; 2010 Feb; 262(4):576-83. PubMed ID: 19896954
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genome-Wide Analysis of Gene-Gene and Gene-Environment Interactions Using Closed-Form Wald Tests.
    Yu Z; Demetriou M; Gillen DL
    Genet Epidemiol; 2015 Sep; 39(6):446-55. PubMed ID: 26095143
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Performance of epistasis detection methods in semi-simulated GWAS.
    Chatelain C; Durand G; Thuillier V; Augé F
    BMC Bioinformatics; 2018 Jun; 19(1):231. PubMed ID: 29914375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Novel Test for Detecting SNP-SNP Interactions in Case-Only Trio Studies.
    Balliu B; Zaitlen N
    Genetics; 2016 Apr; 202(4):1289-97. PubMed ID: 26865367
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.