BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 28334114)

  • 1. BiRen: predicting enhancers with a deep-learning-based model using the DNA sequence alone.
    Yang B; Liu F; Ren C; Ouyang Z; Xie Z; Bo X; Shu W
    Bioinformatics; 2017 Jul; 33(13):1930-1936. PubMed ID: 28334114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. iEnhancer-SKNN: a stacking ensemble learning-based method for enhancer identification and classification using sequence information.
    Wu H; Liu M; Zhang P; Zhang H
    Brief Funct Genomics; 2023 May; 22(3):302-311. PubMed ID: 36715222
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploiting sequence-based features for predicting enhancer-promoter interactions.
    Yang Y; Zhang R; Singh S; Ma J
    Bioinformatics; 2017 Jul; 33(14):i252-i260. PubMed ID: 28881991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancer-MDLF: a novel deep learning framework for identifying cell-specific enhancers.
    Zhang Y; Zhang P; Wu H
    Brief Bioinform; 2024 Jan; 25(2):. PubMed ID: 38485768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromatin accessibility prediction via a hybrid deep convolutional neural network.
    Liu Q; Xia F; Yin Q; Jiang R
    Bioinformatics; 2018 Mar; 34(5):732-738. PubMed ID: 29069282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating distal and proximal information to predict gene expression via a densely connected convolutional neural network.
    Zeng W; Wang Y; Jiang R
    Bioinformatics; 2020 Jan; 36(2):496-503. PubMed ID: 31318408
    [TBL] [Abstract][Full Text] [Related]  

  • 7. DeepCAPE: A Deep Convolutional Neural Network for the Accurate Prediction of Enhancers.
    Chen S; Gan M; Lv H; Jiang R
    Genomics Proteomics Bioinformatics; 2021 Aug; 19(4):565-577. PubMed ID: 33581335
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iEnhancer-2L: a two-layer predictor for identifying enhancers and their strength by pseudo k-tuple nucleotide composition.
    Liu B; Fang L; Long R; Lan X; Chou KC
    Bioinformatics; 2016 Feb; 32(3):362-9. PubMed ID: 26476782
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cross-species enhancer prediction using machine learning.
    MacPhillamy C; Alinejad-Rokny H; Pitchford WS; Low WY
    Genomics; 2022 Sep; 114(5):110454. PubMed ID: 36030022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Predicting enhancers in mammalian genomes using supervised hidden Markov models.
    Zehnder T; Benner P; Vingron M
    BMC Bioinformatics; 2019 Mar; 20(1):157. PubMed ID: 30917778
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DEEP: a general computational framework for predicting enhancers.
    Kleftogiannis D; Kalnis P; Bajic VB
    Nucleic Acids Res; 2015 Jan; 43(1):e6. PubMed ID: 25378307
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SENIES: DNA Shape Enhanced Two-Layer Deep Learning Predictor for the Identification of Enhancers and Their Strength.
    Li Y; Kong F; Cui H; Wang F; Li C; Ma J
    IEEE/ACM Trans Comput Biol Bioinform; 2023; 20(1):637-645. PubMed ID: 35015646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling positional effects of regulatory sequences with spline transformations increases prediction accuracy of deep neural networks.
    Avsec Ž; Barekatain M; Cheng J; Gagneur J
    Bioinformatics; 2018 Apr; 34(8):1261-1269. PubMed ID: 29155928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo identification of replication-timing domains in the human genome by deep learning.
    Liu F; Ren C; Li H; Zhou P; Bo X; Shu W
    Bioinformatics; 2016 Mar; 32(5):641-9. PubMed ID: 26545821
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SeqEnhDL: sequence-based classification of cell type-specific enhancers using deep learning models.
    Wang Y; Jaime-Lara RB; Roy A; Sun Y; Liu X; Joseph PV
    BMC Res Notes; 2021 Mar; 14(1):104. PubMed ID: 33741075
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A machine learning technique for identifying DNA enhancer regions utilizing CIS-regulatory element patterns.
    Butt AH; Alkhalifah T; Alturise F; Khan YD
    Sci Rep; 2022 Sep; 12(1):15183. PubMed ID: 36071071
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved regulatory element prediction based on tissue-specific local epigenomic signatures.
    He Y; Gorkin DU; Dickel DE; Nery JR; Castanon RG; Lee AY; Shen Y; Visel A; Pennacchio LA; Ren B; Ecker JR
    Proc Natl Acad Sci U S A; 2017 Feb; 114(9):E1633-E1640. PubMed ID: 28193886
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iEnhancer-XG: interpretable sequence-based enhancers and their strength predictor.
    Cai L; Ren X; Fu X; Peng L; Gao M; Zeng X
    Bioinformatics; 2021 May; 37(8):1060-1067. PubMed ID: 33119044
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DECODE: a Deep-learning framework for Condensing enhancers and refining boundaries with large-scale functional assays.
    Chen Z; Zhang J; Liu J; Dai Y; Lee D; Min MR; Xu M; Gerstein M
    Bioinformatics; 2021 Jul; 37(Suppl_1):i280-i288. PubMed ID: 34252960
    [TBL] [Abstract][Full Text] [Related]  

  • 20. DeepGenGrep: a general deep learning-based predictor for multiple genomic signals and regions.
    Liu Q; Fang H; Wang X; Wang M; Li S; Coin LJM; Li F; Song J
    Bioinformatics; 2022 Sep; 38(17):4053-4061. PubMed ID: 35799358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.