These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 28334181)

  • 1. Uncovering the Spatial Profile of Contour Integration from Fixational Saccades: Evidence for Widespread Processing in V1.
    Gilad A; Oz R; Slovin H
    Cereb Cortex; 2017 Nov; 27(11):5261-5273. PubMed ID: 28334181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Figure-ground processing during fixational saccades in V1: indication for higher-order stability.
    Gilad A; Pesoa Y; Ayzenshtat I; Slovin H
    J Neurosci; 2014 Feb; 34(9):3247-52. PubMed ID: 24573283
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Selective activation of visual cortex neurons by fixational eye movements: implications for neural coding.
    Snodderly DM; Kagan I; Gur M
    Vis Neurosci; 2001; 18(2):259-77. PubMed ID: 11417801
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Population responses to contour integration: early encoding of discrete elements and late perceptual grouping.
    Gilad A; Meirovithz E; Slovin H
    Neuron; 2013 Apr; 78(2):389-402. PubMed ID: 23622069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiological perspective on fixational eye movements.
    Snodderly DM
    Vision Res; 2016 Jan; 118():31-47. PubMed ID: 25536465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-term voltage-sensitive dye imaging reveals cortical dynamics in behaving monkeys.
    Slovin H; Arieli A; Hildesheim R; Grinvald A
    J Neurophysiol; 2002 Dec; 88(6):3421-38. PubMed ID: 12466458
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Contour saliency in primary visual cortex.
    Li W; Piƫch V; Gilbert CD
    Neuron; 2006 Jun; 50(6):951-62. PubMed ID: 16772175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Spatiotemporal effects of microsaccades on population activity in the visual cortex of monkeys during fixation.
    Meirovithz E; Ayzenshtat I; Werner-Reiss U; Shamir I; Slovin H
    Cereb Cortex; 2012 Feb; 22(2):294-307. PubMed ID: 21653284
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reconstruction of shape contours from V1 activity at high resolution.
    Zurawel G; Shamir I; Slovin H
    Neuroimage; 2016 Jan; 125():1005-1012. PubMed ID: 26518630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Precise spatiotemporal patterns among visual cortical areas and their relation to visual stimulus processing.
    Ayzenshtat I; Meirovithz E; Edelman H; Werner-Reiss U; Bienenstock E; Abeles M; Slovin H
    J Neurosci; 2010 Aug; 30(33):11232-45. PubMed ID: 20720131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different processing phases for features, figures, and selective attention in the primary visual cortex.
    Roelfsema PR; Tolboom M; Khayat PS
    Neuron; 2007 Dec; 56(5):785-92. PubMed ID: 18054856
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Texture Segregation Causes Early Figure Enhancement and Later Ground Suppression in Areas V1 and V4 of Visual Cortex.
    Poort J; Self MW; van Vugt B; Malkki H; Roelfsema PR
    Cereb Cortex; 2016 Oct; 26(10):3964-76. PubMed ID: 27522074
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Perceptual grouping of object contours survives saccades.
    Demeyer M; De Graef P; Verfaillie K; Wagemans J
    PLoS One; 2011; 6(6):e21257. PubMed ID: 21713007
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synergistic Processing of Visual Contours across Cortical Layers in V1 and V2.
    Chen R; Wang F; Liang H; Li W
    Neuron; 2017 Dec; 96(6):1388-1402.e4. PubMed ID: 29224721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Saccades and drifts differentially modulate neuronal activity in V1: effects of retinal image motion, position, and extraretinal influences.
    Kagan I; Gur M; Snodderly DM
    J Vis; 2008 Nov; 8(14):19.1-25. PubMed ID: 19146320
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of eye movements in a contour detection task.
    Van Humbeeck N; Schmitt N; Hermens F; Wagemans J; Ernst UA
    J Vis; 2013 Dec; 13(14):. PubMed ID: 24306854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimal decoding of correlated neural population responses in the primate visual cortex.
    Chen Y; Geisler WS; Seidemann E
    Nat Neurosci; 2006 Nov; 9(11):1412-20. PubMed ID: 17057706
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential contribution of early visual areas to the perceptual process of contour processing.
    Schira MM; Fahle M; Donner TH; Kraft A; Brandt SA
    J Neurophysiol; 2004 Apr; 91(4):1716-21. PubMed ID: 14668291
    [TBL] [Abstract][Full Text] [Related]  

  • 19. V1 neurons signal acquisition of an internal representation of stimulus location.
    Sharma J; Dragoi V; Tenenbaum JB; Miller EK; Sur M
    Science; 2003 Jun; 300(5626):1758-63. PubMed ID: 12805552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid contour integration in macaque monkeys.
    Mandon S; Kreiter AK
    Vision Res; 2005 Feb; 45(3):291-300. PubMed ID: 15607346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.