These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 28334276)

  • 21. PASSION: an ensemble neural network approach for identifying the binding sites of RBPs on circRNAs.
    Jia C; Bi Y; Chen J; Leier A; Li F; Song J
    Bioinformatics; 2020 Aug; 36(15):4276-4282. PubMed ID: 32426818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improved analysis of (e)CLIP data with RCRUNCH yields a compendium of RNA-binding protein binding sites and motifs.
    Katsantoni M; van Nimwegen E; Zavolan M
    Genome Biol; 2023 Apr; 24(1):77. PubMed ID: 37069586
    [TBL] [Abstract][Full Text] [Related]  

  • 23. RBPmap: A Tool for Mapping and Predicting the Binding Sites of RNA-Binding Proteins Considering the Motif Environment.
    Paz I; Argoetti A; Cohen N; Even N; Mandel-Gutfreund Y
    Methods Mol Biol; 2022; 2404():53-65. PubMed ID: 34694603
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the RBP binding sites on lncRNAs using the high-order nucleotide encoding convolutional neural network.
    Zhang SW; Wang Y; Zhang XX; Wang JQ
    Anal Biochem; 2019 Oct; 583():113364. PubMed ID: 31323206
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A web server for identifying circRNA-RBP variable-length binding sites based on stacked generalization ensemble deep learning network.
    Wang Z; Lei X
    Methods; 2022 Sep; 205():179-190. PubMed ID: 35810958
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and bioinformatics analysis of genome-wide CLIP experiments.
    Wang T; Xiao G; Chu Y; Zhang MQ; Corey DR; Xie Y
    Nucleic Acids Res; 2015 Jun; 43(11):5263-74. PubMed ID: 25958398
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Prediction of RNA-protein sequence and structure binding preferences using deep convolutional and recurrent neural networks.
    Pan X; Rijnbeek P; Yan J; Shen HB
    BMC Genomics; 2018 Jul; 19(1):511. PubMed ID: 29970003
    [TBL] [Abstract][Full Text] [Related]  

  • 28. piPipes: a set of pipelines for piRNA and transposon analysis via small RNA-seq, RNA-seq, degradome- and CAGE-seq, ChIP-seq and genomic DNA sequencing.
    Han BW; Wang W; Zamore PD; Weng Z
    Bioinformatics; 2015 Feb; 31(4):593-5. PubMed ID: 25342065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. iDRBP_MMC: Identifying DNA-Binding Proteins and RNA-Binding Proteins Based on Multi-Label Learning Model and Motif-Based Convolutional Neural Network.
    Zhang J; Chen Q; Liu B
    J Mol Biol; 2020 Nov; 432(22):5860-5875. PubMed ID: 32920048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Prediction of Dynamic RBP-RNA Interactions Using PrismNet.
    Huang W; Zhang QC
    Methods Mol Biol; 2023; 2568():123-132. PubMed ID: 36227565
    [TBL] [Abstract][Full Text] [Related]  

  • 32. PRAS: Predicting functional targets of RNA binding proteins based on CLIP-seq peaks.
    Lin J; Zhang Y; Frankel WN; Ouyang Z
    PLoS Comput Biol; 2019 Aug; 15(8):e1007227. PubMed ID: 31425505
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RBP-Var: a database of functional variants involved in regulation mediated by RNA-binding proteins.
    Mao F; Xiao L; Li X; Liang J; Teng H; Cai W; Sun ZS
    Nucleic Acids Res; 2016 Jan; 44(D1):D154-63. PubMed ID: 26635394
    [TBL] [Abstract][Full Text] [Related]  

  • 34. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins.
    Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392
    [TBL] [Abstract][Full Text] [Related]  

  • 35. DeFCoM: analysis and modeling of transcription factor binding sites using a motif-centric genomic footprinter.
    Quach B; Furey TS
    Bioinformatics; 2017 Apr; 33(7):956-963. PubMed ID: 27993786
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epigenetic priors for identifying active transcription factor binding sites.
    Cuellar-Partida G; Buske FA; McLeay RC; Whitington T; Noble WS; Bailey TL
    Bioinformatics; 2012 Jan; 28(1):56-62. PubMed ID: 22072382
    [TBL] [Abstract][Full Text] [Related]  

  • 37. omiXcore: a web server for prediction of protein interactions with large RNA.
    Armaos A; Cirillo D; Gaetano Tartaglia G
    Bioinformatics; 2017 Oct; 33(19):3104-3106. PubMed ID: 28637296
    [TBL] [Abstract][Full Text] [Related]  

  • 38. MotifMap: a human genome-wide map of candidate regulatory motif sites.
    Xie X; Rigor P; Baldi P
    Bioinformatics; 2009 Jan; 25(2):167-74. PubMed ID: 19017655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Orthogonal matrix factorization enables integrative analysis of multiple RNA binding proteins.
    Stražar M; Žitnik M; Zupan B; Ule J; Curk T
    Bioinformatics; 2016 May; 32(10):1527-35. PubMed ID: 26787667
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Thermodynamic modeling reveals widespread multivalent binding by RNA-binding proteins.
    Sohrabi-Jahromi S; Söding J
    Bioinformatics; 2021 Jul; 37(Suppl_1):i308-i316. PubMed ID: 34252974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.