These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 28334305)
1. Variance component score test for time-course gene set analysis of longitudinal RNA-seq data. Agniel D; Hejblum BP Biostatistics; 2017 Oct; 18(4):589-604. PubMed ID: 28334305 [TBL] [Abstract][Full Text] [Related]
2. SimSeq: a nonparametric approach to simulation of RNA-sequence datasets. Benidt S; Nettleton D Bioinformatics; 2015 Jul; 31(13):2131-40. PubMed ID: 25725090 [TBL] [Abstract][Full Text] [Related]
3. PLNseq: a multivariate Poisson lognormal distribution for high-throughput matched RNA-sequencing read count data. Zhang H; Xu J; Jiang N; Hu X; Luo Z Stat Med; 2015 Apr; 34(9):1577-89. PubMed ID: 25641202 [TBL] [Abstract][Full Text] [Related]
4. A comparison of per sample global scaling and per gene normalization methods for differential expression analysis of RNA-seq data. Li X; Brock GN; Rouchka EC; Cooper NGF; Wu D; O'Toole TE; Gill RS; Eteleeb AM; O'Brien L; Rai SN PLoS One; 2017; 12(5):e0176185. PubMed ID: 28459823 [TBL] [Abstract][Full Text] [Related]
5. Comparative evaluation of gene set analysis approaches for RNA-Seq data. Rahmatallah Y; Emmert-Streib F; Glazko G BMC Bioinformatics; 2014 Dec; 15(1):397. PubMed ID: 25475910 [TBL] [Abstract][Full Text] [Related]
6. Synthetic data sets for the identification of key ingredients for RNA-seq differential analysis. Rigaill G; Balzergue S; Brunaud V; Blondet E; Rau A; Rogier O; Caius J; Maugis-Rabusseau C; Soubigou-Taconnat L; Aubourg S; Lurin C; Martin-Magniette ML; Delannoy E Brief Bioinform; 2018 Jan; 19(1):65-76. PubMed ID: 27742662 [TBL] [Abstract][Full Text] [Related]
7. rSeqNP: a non-parametric approach for detecting differential expression and splicing from RNA-Seq data. Shi Y; Chinnaiyan AM; Jiang H Bioinformatics; 2015 Jul; 31(13):2222-4. PubMed ID: 25717189 [TBL] [Abstract][Full Text] [Related]
8. An evaluation of RNA-seq differential analysis methods. Li D; Zand MS; Dye TD; Goniewicz ML; Rahman I; Xie Z PLoS One; 2022; 17(9):e0264246. PubMed ID: 36112652 [TBL] [Abstract][Full Text] [Related]
9. Experimental Design and Power Calculation for RNA-seq Experiments. Wu Z; Wu H Methods Mol Biol; 2016; 1418():379-90. PubMed ID: 27008024 [TBL] [Abstract][Full Text] [Related]
10. Pathway analysis for RNA-Seq data using a score-based approach. Zhou YH Biometrics; 2016 Mar; 72(1):165-74. PubMed ID: 26259845 [TBL] [Abstract][Full Text] [Related]
11. An optimal test with maximum average power while controlling FDR with application to RNA-seq data. Si Y; Liu P Biometrics; 2013 Sep; 69(3):594-605. PubMed ID: 23889143 [TBL] [Abstract][Full Text] [Related]
12. LPEseq: Local-Pooled-Error Test for RNA Sequencing Experiments with a Small Number of Replicates. Gim J; Won S; Park T PLoS One; 2016; 11(8):e0159182. PubMed ID: 27532300 [TBL] [Abstract][Full Text] [Related]
13. A comprehensive evaluation of normalization methods for Illumina high-throughput RNA sequencing data analysis. Dillies MA; Rau A; Aubert J; Hennequet-Antier C; Jeanmougin M; Servant N; Keime C; Marot G; Castel D; Estelle J; Guernec G; Jagla B; Jouneau L; Laloë D; Le Gall C; Schaëffer B; Le Crom S; Guedj M; Jaffrézic F; Brief Bioinform; 2013 Nov; 14(6):671-83. PubMed ID: 22988256 [TBL] [Abstract][Full Text] [Related]
14. Detection of high variability in gene expression from single-cell RNA-seq profiling. Chen HI; Jin Y; Huang Y; Chen Y BMC Genomics; 2016 Aug; 17 Suppl 7(Suppl 7):508. PubMed ID: 27556924 [TBL] [Abstract][Full Text] [Related]
15. Statistical inference for time course RNA-Seq data using a negative binomial mixed-effect model. Sun X; Dalpiaz D; Wu D; S Liu J; Zhong W; Ma P BMC Bioinformatics; 2016 Aug; 17(1):324. PubMed ID: 27565575 [TBL] [Abstract][Full Text] [Related]
16. OMICfpp: a fuzzy approach for paired RNA-Seq counts. Berral-Gonzalez A; Riffo-Campos AL; Ayala G BMC Genomics; 2019 Apr; 20(1):259. PubMed ID: 30940089 [TBL] [Abstract][Full Text] [Related]
17. Correlation between RNA-Seq and microarrays results using TCGA data. Chen L; Sun F; Yang X; Jin Y; Shi M; Wang L; Shi Y; Zhan C; Wang Q Gene; 2017 Sep; 628():200-204. PubMed ID: 28734892 [TBL] [Abstract][Full Text] [Related]
18. Statistical Modeling of High Dimensional Counts. Love MI Methods Mol Biol; 2021; 2284():97-134. PubMed ID: 33835440 [TBL] [Abstract][Full Text] [Related]
19. Gene dispersion is the key determinant of the read count bias in differential expression analysis of RNA-seq data. Yoon S; Nam D BMC Genomics; 2017 May; 18(1):408. PubMed ID: 28545404 [TBL] [Abstract][Full Text] [Related]
20. Assessment of Single Cell RNA-Seq Normalization Methods. Ding B; Zheng L; Wang W G3 (Bethesda); 2017 Jul; 7(7):2039-2045. PubMed ID: 28468817 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]