These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 28334367)

  • 1. Modeling of Stiffness and Strength of Bone at Nanoscale.
    Abueidda DW; Sabet FA; Jasiuk IM
    J Biomech Eng; 2017 May; 139(5):. PubMed ID: 28334367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A finite element study evaluating the influence of mineralization distribution and content on the tensile mechanical response of mineralized collagen fibril networks.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2019 Dec; 100():103361. PubMed ID: 31493689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An embedded element based 2D finite element model for the strength prediction of mineralized collagen fibril using Monte-Carlo type of simulations.
    Sharma R; Awasthi A
    J Biomech; 2020 Jul; 108():109867. PubMed ID: 32635994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiscale damage and strength of lamellar bone modeled by cohesive finite elements.
    Hamed E; Jasiuk I
    J Mech Behav Biomed Mater; 2013 Dec; 28():94-110. PubMed ID: 23973769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of the mineral staggering on the elastic properties of the mineralized collagen fibril in lamellar bone.
    Vercher-Martínez A; Giner E; Arango C; Fuenmayor FJ
    J Mech Behav Biomed Mater; 2015 Feb; 42():243-56. PubMed ID: 25498297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of extrafibrillar matrix to the mechanical behavior of bone using a novel cohesive finite element model.
    Lin L; Samuel J; Zeng X; Wang X
    J Mech Behav Biomed Mater; 2017 Jan; 65():224-235. PubMed ID: 27592291
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intrafibrillar plasticity through mineral/collagen sliding is the dominant mechanism for the extreme toughness of antler bone.
    Gupta HS; Krauss S; Kerschnitzki M; Karunaratne A; Dunlop JW; Barber AH; Boesecke P; Funari SS; Fratzl P
    J Mech Behav Biomed Mater; 2013 Dec; 28():366-82. PubMed ID: 23707600
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient two-scale 3D FE model of the bone fibril array: comparison of anisotropic elastic properties with analytical methods and micro-sample testing.
    Alizadeh E; Dehestani M; Zysset P
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2127-2147. PubMed ID: 32333217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mineralized collagen fibril network spatial arrangement influences cortical bone fracture behavior.
    Wang Y; Ural A
    J Biomech; 2018 Jan; 66():70-77. PubMed ID: 29137726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of modifications in mineralized collagen fibril and extra-fibrillar matrix material properties on submicroscale mechanical behavior of cortical bone.
    Wang Y; Ural A
    J Mech Behav Biomed Mater; 2018 Jun; 82():18-26. PubMed ID: 29567526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue.
    Alijani H; Vaughan TJ
    J Mech Behav Biomed Mater; 2022 May; 129():105139. PubMed ID: 35248874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mineralized collagen fibrils: a mechanical model with a staggered arrangement of mineral particles.
    Jäger I; Fratzl P
    Biophys J; 2000 Oct; 79(4):1737-46. PubMed ID: 11023882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The emergence of an unusual stiffness profile in hierarchical biological tissues.
    Bar-On B; Wagner HD
    Acta Biomater; 2013 Sep; 9(9):8099-109. PubMed ID: 23669625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A three-scale finite element investigation into the effects of tissue mineralisation and lamellar organisation in human cortical and trabecular bone.
    Vaughan TJ; McCarthy CT; McNamara LM
    J Mech Behav Biomed Mater; 2012 Aug; 12():50-62. PubMed ID: 22659366
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear hierarchical multiscale modeling of cortical bone considering its nanoscale microstructure.
    Ghanbari J; Naghdabadi R
    J Biomech; 2009 Jul; 42(10):1560-1565. PubMed ID: 19524928
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of mineral-collagen interfacial behavior on the microdamage progression in bone using a probabilistic cohesive finite element model.
    Luo Q; Nakade R; Dong X; Rong Q; Wang X
    J Mech Behav Biomed Mater; 2011 Oct; 4(7):943-52. PubMed ID: 21783104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ductile sliding between mineral crystals followed by rupture of collagen crosslinks: experimentally supported micromechanical explanation of bone strength.
    Fritsch A; Hellmich C; Dormieux L
    J Theor Biol; 2009 Sep; 260(2):230-52. PubMed ID: 19497330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale approach including microfibril scale to assess elastic constants of cortical bone based on neural network computation and homogenization method.
    Barkaoui A; Chamekh A; Merzouki T; Hambli R; Mkaddem A
    Int J Numer Method Biomed Eng; 2014 Mar; 30(3):318-38. PubMed ID: 24123969
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physically based 3D finite element model of a single mineralized collagen microfibril.
    Hambli R; Barkaoui A
    J Theor Biol; 2012 May; 301():28-41. PubMed ID: 22365909
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano finite element modeling of the mechanical behavior of biocomposites using multi-scale (virtual internal bond) material models.
    Thiagarajan G; Deshmukh K; Wang Y; Misra A; Katz JL; Spencer P
    J Biomed Mater Res A; 2007 Nov; 83(2):332-44. PubMed ID: 17450580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.