These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 28334401)

  • 1. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation.
    Carey D; Miquel ME; Evans BG; Adank P; McGettigan C
    Cereb Cortex; 2017 May; 27(5):3064-3079. PubMed ID: 28334401
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional brain outcomes of L2 speech learning emerge during sensorimotor transformation.
    Carey D; Miquel ME; Evans BG; Adank P; McGettigan C
    Neuroimage; 2017 Oct; 159():18-31. PubMed ID: 28669904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human Sensorimotor Cortex Control of Directly Measured Vocal Tract Movements during Vowel Production.
    Conant DF; Bouchard KE; Leonard MK; Chang EF
    J Neurosci; 2018 Mar; 38(12):2955-2966. PubMed ID: 29439164
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sensory-motor networks involved in speech production and motor control: an fMRI study.
    Behroozmand R; Shebek R; Hansen DR; Oya H; Robin DA; Howard MA; Greenlee JD
    Neuroimage; 2015 Apr; 109():418-28. PubMed ID: 25623499
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional and Quantitative MRI Mapping of Somatomotor Representations of Human Supralaryngeal Vocal Tract.
    Carey D; Krishnan S; Callaghan MF; Sereno MI; Dick F
    Cereb Cortex; 2017 Jan; 27(1):265-278. PubMed ID: 28069761
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of vocal tract morphology in speech development: perceptual targets and sensorimotor maps for synthesized French vowels from birth to adulthood.
    Ménard L; Schwartz JL; Boë LJ
    J Speech Lang Hear Res; 2004 Oct; 47(5):1059-80. PubMed ID: 15603462
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D dynamic MRI of the vocal tract during natural speech.
    Lim Y; Zhu Y; Lingala SG; Byrd D; Narayanan S; Nayak KS
    Magn Reson Med; 2019 Mar; 81(3):1511-1520. PubMed ID: 30390319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional MRI assessment of orofacial articulators: neural correlates of lip, jaw, larynx, and tongue movements.
    Grabski K; Lamalle L; Vilain C; Schwartz JL; Vallée N; Tropres I; Baciu M; Le Bas JF; Sato M
    Hum Brain Mapp; 2012 Oct; 33(10):2306-21. PubMed ID: 21826760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-Resolution, Non-Invasive Imaging of Upper Vocal Tract Articulators Compatible with Human Brain Recordings.
    Bouchard KE; Conant DF; Anumanchipalli GK; Dichter B; Chaisanguanthum KS; Johnson K; Chang EF
    PLoS One; 2016; 11(3):e0151327. PubMed ID: 27019106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system.
    Callan DE; Kent RD; Guenther FH; Vorperian HK
    J Speech Lang Hear Res; 2000 Jun; 43(3):721-36. PubMed ID: 10877441
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adaptive phonemic coding in the listening and speaking brain.
    Grabski K; Sato M
    Neuropsychologia; 2020 Jan; 136():107267. PubMed ID: 31770550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensorimotor Representation of Speech Perception. Cross-Decoding of Place of Articulation Features during Selective Attention to Syllables in 7T fMRI.
    Archila-Meléndez ME; Valente G; Correia JM; Rouhl RPW; van Kranen-Mastenbroek VH; Jansma BM
    eNeuro; 2018; 5(2):. PubMed ID: 29610768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The acoustical significance of tongue, lip, and larynx maneuvers in rounded palatal vowels.
    Wood S
    J Acoust Soc Am; 1986 Aug; 80(2):391-401. PubMed ID: 3745671
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The dynamic and task-dependent representational transformation between the motor and sensory systems during speech production.
    Zhang W; Liu Y; Wang X; Tian X
    Cogn Neurosci; 2020; 11(4):194-204. PubMed ID: 32720845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Encoding of Articulatory Kinematic Trajectories in Human Speech Sensorimotor Cortex.
    Chartier J; Anumanchipalli GK; Johnson K; Chang EF
    Neuron; 2018 Jun; 98(5):1042-1054.e4. PubMed ID: 29779940
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Magnetic resonance imaging of the brain and vocal tract: Applications to the study of speech production and language learning.
    Carey D; McGettigan C
    Neuropsychologia; 2017 Apr; 98():201-211. PubMed ID: 27288115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hierarchical Organization of Auditory and Motor Representations in Speech Perception: Evidence from Searchlight Similarity Analysis.
    Evans S; Davis MH
    Cereb Cortex; 2015 Dec; 25(12):4772-88. PubMed ID: 26157026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mapping the cortical representation of speech sounds in a syllable repetition task.
    Markiewicz CJ; Bohland JW
    Neuroimage; 2016 Nov; 141():174-190. PubMed ID: 27421186
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Neural Basis of Vocal Pitch Imitation in Humans.
    Belyk M; Pfordresher PQ; Liotti M; Brown S
    J Cogn Neurosci; 2016 Apr; 28(4):621-35. PubMed ID: 26696298
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Segmentation of tongue shapes during vowel production in magnetic resonance images based on statistical modelling.
    Delmoral JC; Rua Ventura SM; Tavares JMR
    Proc Inst Mech Eng H; 2018 Mar; 232(3):271-281. PubMed ID: 29350087
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.