These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 28334630)

  • 1. Probing the oxidative etching induced dissolution of palladium nanocrystals in solution by liquid cell transmission electron microscopy.
    Jiang Y; Zhu G; Dong G; Lin F; Zhang H; Yuan J; Zhang Z; Jin C
    Micron; 2017 Jun; 97():22-28. PubMed ID: 28334630
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ study of oxidative etching of palladium nanocrystals by liquid cell electron microscopy.
    Jiang Y; Zhu G; Lin F; Zhang H; Jin C; Yuan J; Yang D; Zhang Z
    Nano Lett; 2014 Jul; 14(7):3761-5. PubMed ID: 24927485
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dissolution Kinetics of Oxidative Etching of Cubic and Icosahedral Platinum Nanoparticles Revealed by in Situ Liquid Transmission Electron Microscopy.
    Wu J; Gao W; Yang H; Zuo JM
    ACS Nano; 2017 Feb; 11(2):1696-1703. PubMed ID: 28187252
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Gold Nanocrystal Etching as a Means of Probing the Dynamic Chemical Environment in Graphene Liquid Cell Electron Microscopy.
    Hauwiller MR; Ondry JC; Chan CM; Khandekar P; Yu J; Alivisatos AP
    J Am Chem Soc; 2019 Mar; 141(10):4428-4437. PubMed ID: 30777753
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Observation of Surface Ligands-Controlled Etching of Palladium Nanocrystals.
    Zheng Q; Shangguan J; Li X; Zhang Q; Bustillo KC; Wang LW; Jiang J; Zheng H
    Nano Lett; 2021 Aug; 21(15):6640-6647. PubMed ID: 34324356
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anomalous Shape Evolution of Ag
    Zhang Q; Gao G; Shen Y; Peng X; Shangguan J; Wang Y; Dong H; Bustillo K; Wang L; Sun L; Zheng H
    Nano Lett; 2019 Jan; 19(1):591-597. PubMed ID: 30582699
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Visualizing Ligand-Mediated Bimetallic Nanocrystal Formation Pathways with
    Wang M; Leff AC; Li Y; Woehl TJ
    ACS Nano; 2021 Feb; 15(2):2578-2588. PubMed ID: 33496576
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Using Graphene Liquid Cell Transmission Electron Microscopy to Study in Situ Nanocrystal Etching.
    Hauwiller MR; Ondry JC; Alivisatos AP
    J Vis Exp; 2018 May; (135):. PubMed ID: 29863683
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring intracellular fate of drug nanocrystals with crystal-integrated and environment-sensitive fluorophores.
    Gao W; Lee D; Meng Z; Li T
    J Control Release; 2017 Dec; 267():214-222. PubMed ID: 28844755
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Detection of Pb
    Dang Z; Manna L; Baranov D
    Nanoscale; 2021 Feb; 13(4):2317-2323. PubMed ID: 33459324
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tracking the Effects of Ligands on Oxidative Etching of Gold Nanorods in Graphene Liquid Cell Electron Microscopy.
    Hauwiller MR; Ye X; Jones MR; Chan CM; Calvin JJ; Crook MF; Zheng H; Alivisatos AP
    ACS Nano; 2020 Aug; 14(8):10239-10250. PubMed ID: 32806045
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Elucidating the Role of Halides and Iron during Radiolysis-Driven Oxidative Etching of Gold Nanocrystals Using Liquid Cell Transmission Electron Microscopy and Pulse Radiolysis.
    Crook MF; Laube C; Moreno-Hernandez IA; Kahnt A; Zahn S; Ondry JC; Liu A; Alivisatos AP
    J Am Chem Soc; 2021 Aug; 143(30):11703-11713. PubMed ID: 34292703
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An In situ TEM study of the surface oxidation of palladium nanocrystals assisted by electron irradiation.
    Zhang D; Jin C; Tian H; Xiong Y; Zhang H; Qiao P; Fan J; Zhang Z; Li ZY; Li J
    Nanoscale; 2017 May; 9(19):6327-6333. PubMed ID: 28230871
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spontaneous Reshaping and Splitting of AgCl Nanocrystals under Electron Beam Illumination.
    Tian X; Anand U; Mirsaidov U; Zheng H
    Small; 2018 Nov; 14(48):e1803231. PubMed ID: 30369027
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ determination of the saturation solubility of nanocrystals of poorly soluble drugs for dermal application.
    Colombo M; Staufenbiel S; Rühl E; Bodmeier R
    Int J Pharm; 2017 Apr; 521(1-2):156-166. PubMed ID: 28223247
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formic acid-assisted synthesis of palladium nanocrystals and their electrocatalytic properties.
    Wang Q; Wang Y; Guo P; Li Q; Ding R; Wang B; Li H; Liu J; Zhao XS
    Langmuir; 2014 Jan; 30(1):440-6. PubMed ID: 24369065
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intracellular uptake of nanocrystals: Probing with aggregation-induced emission of fluorescence and kinetic modeling.
    Zhang J; Corpstein CD; Li T
    Acta Pharm Sin B; 2021 Apr; 11(4):1021-1029. PubMed ID: 33996414
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revealing Surface Restraint-Induced Hexagonal Pd Nanocrystals via
    You R; Wu Z; Yu J; Wang F; Chen S; Han ZK; Yuan W; Yang H; Wang Y
    Nano Lett; 2022 Jun; 22(11):4333-4339. PubMed ID: 35584407
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Imaging the kinetics of anisotropic dissolution of bimetallic core-shell nanocubes using graphene liquid cells.
    Chen L; Leonardi A; Chen J; Cao M; Li N; Su D; Zhang Q; Engel M; Ye X
    Nat Commun; 2020 Jun; 11(1):3041. PubMed ID: 32546723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissolution study of nanocrystal powders of a poorly soluble drug by UV imaging and channel flow methods.
    Sarnes A; Østergaard J; Jensen SS; Aaltonen J; Rantanen J; Hirvonen J; Peltonen L
    Eur J Pharm Sci; 2013 Nov; 50(3-4):511-9. PubMed ID: 23999036
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.