BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

444 related articles for article (PubMed ID: 28334779)

  • 41. Genome engineering in human cells.
    Song M; Kim YH; Kim JS; Kim H
    Methods Enzymol; 2014; 546():93-118. PubMed ID: 25398337
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Basic and Clinical Application of Adeno-Associated Virus-Mediated Genome Editing.
    He X; Xie H; Liu X; Gu F
    Hum Gene Ther; 2019 Jun; 30(6):673-681. PubMed ID: 30588843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Rapid and precise engineering of the Caenorhabditis elegans genome with lethal mutation co-conversion and inactivation of NHEJ repair.
    Ward JD
    Genetics; 2015 Feb; 199(2):363-77. PubMed ID: 25491644
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Inverted terminal repeat sequences are important for intermolecular recombination and circularization of adeno-associated virus genomes.
    Yan Z; Zak R; Zhang Y; Engelhardt JF
    J Virol; 2005 Jan; 79(1):364-79. PubMed ID: 15596830
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Programmable base editing of zebrafish genome using a modified CRISPR-Cas9 system.
    Zhang Y; Qin W; Lu X; Xu J; Huang H; Bai H; Li S; Lin S
    Nat Commun; 2017 Jul; 8(1):118. PubMed ID: 28740134
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Non-viral Delivery of Zinc Finger Nuclease mRNA Enables Highly Efficient In Vivo Genome Editing of Multiple Therapeutic Gene Targets.
    Conway A; Mendel M; Kim K; McGovern K; Boyko A; Zhang L; Miller JC; DeKelver RC; Paschon DE; Mui BL; Lin PJC; Tam YK; Barbosa C; Redelmeier T; Holmes MC; Lee G
    Mol Ther; 2019 Apr; 27(4):866-877. PubMed ID: 30902585
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Efficient DNA knock-in using AAV-mediated delivery with 2-cell embryo CRISPR-Cas9 electroporation.
    Davis DJ; McNew JF; Maresca-Fichter H; Chen K; Telugu BP; Bryda EC
    Front Genome Ed; 2023; 5():1256451. PubMed ID: 37694158
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Controlled delivery of β-globin-targeting TALENs and CRISPR/Cas9 into mammalian cells for genome editing using microinjection.
    Cottle RN; Lee CM; Archer D; Bao G
    Sci Rep; 2015 Nov; 5():16031. PubMed ID: 26558999
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Enhancing homology-directed genome editing by catalytically active and inactive CRISPR-Cas9 using asymmetric donor DNA.
    Richardson CD; Ray GJ; DeWitt MA; Curie GL; Corn JE
    Nat Biotechnol; 2016 Mar; 34(3):339-44. PubMed ID: 26789497
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Adeno-associated virus-mediated gene delivery promotes S-phase entry-independent precise targeted integration in cardiomyocytes.
    Kohama Y; Higo S; Masumura Y; Shiba M; Kondo T; Ishizu T; Higo T; Nakamura S; Kameda S; Tabata T; Inoue H; Motooka D; Okuzaki D; Takashima S; Miyagawa S; Sawa Y; Hikoso S; Sakata Y
    Sci Rep; 2020 Sep; 10(1):15348. PubMed ID: 32948788
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Site-specific gene knock-in and bacterial phytase gene expression in
    Zadabbas Shahabadi H; Akbarzadeh A; Ofoghi H; Kadkhodaei S
    Front Plant Sci; 2023; 14():1150436. PubMed ID: 37275253
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Programmable Site-Specific Nucleases for Targeted Genome Engineering in Higher Eukaryotes.
    Govindan G; Ramalingam S
    J Cell Physiol; 2016 Nov; 231(11):2380-92. PubMed ID: 26945523
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Genome editing at the crossroads of delivery, specificity, and fidelity.
    Maggio I; Gonçalves MA
    Trends Biotechnol; 2015 May; 33(5):280-91. PubMed ID: 25819765
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adeno-Associated Virus-Mediated Delivery of CRISPR-Cas Systems for Genome Engineering in Mammalian Cells.
    Gaj T; Schaffer DV
    Cold Spring Harb Protoc; 2016 Nov; 2016(11):. PubMed ID: 27803249
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Homology-driven genome editing in hematopoietic stem and progenitor cells using ZFN mRNA and AAV6 donors.
    Wang J; Exline CM; DeClercq JJ; Llewellyn GN; Hayward SB; Li PW; Shivak DA; Surosky RT; Gregory PD; Holmes MC; Cannon PM
    Nat Biotechnol; 2015 Dec; 33(12):1256-1263. PubMed ID: 26551060
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Improving the DNA specificity and applicability of base editing through protein engineering and protein delivery.
    Rees HA; Komor AC; Yeh WH; Caetano-Lopes J; Warman M; Edge ASB; Liu DR
    Nat Commun; 2017 Jun; 8():15790. PubMed ID: 28585549
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A promoterless AAV6.2FF-based lung gene editing platform for the correction of surfactant protein B deficiency.
    Thomas SP; Domm JM; van Vloten JP; Xu L; Vadivel A; Yates JGE; Pei Y; Ingrao J; van Lieshout LP; Jackson SR; Minott JA; Achuthan A; Mehrani Y; McAusland TM; Zhang W; Karimi K; Vaughan AE; de Jong J; Kang MH; Thebaud B; Wootton SK
    Mol Ther; 2023 Dec; 31(12):3457-3477. PubMed ID: 37805711
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome editing using Cas9 nickases.
    Trevino AE; Zhang F
    Methods Enzymol; 2014; 546():161-74. PubMed ID: 25398340
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Targeted transgene integration into transgenic mouse fibroblasts carrying the full-length human AAVS1 locus mediated by HSV/AAV rep(+) hybrid amplicon vector.
    Bakowska JC; Di Maria MV; Camp SM; Wang Y; Allen PD; Breakefield XO
    Gene Ther; 2003 Sep; 10(19):1691-702. PubMed ID: 12923568
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins.
    Mangeot PE; Risson V; Fusil F; Marnef A; Laurent E; Blin J; Mournetas V; Massouridès E; Sohier TJM; Corbin A; Aubé F; Teixeira M; Pinset C; Schaeffer L; Legube G; Cosset FL; Verhoeyen E; Ohlmann T; Ricci EP
    Nat Commun; 2019 Jan; 10(1):45. PubMed ID: 30604748
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 23.