These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 28334993)
1. The mechanism of the glycosylase reaction with hOGG1 base-excision repair enzyme: concerted effect of Lys249 and Asp268 during excision of 8-oxoguanine. Šebera J; Hattori Y; Sato D; Reha D; Nencka R; Kohno T; Kojima C; Tanaka Y; Sychrovský V Nucleic Acids Res; 2017 May; 45(9):5231-5242. PubMed ID: 28334993 [TBL] [Abstract][Full Text] [Related]
2. Pyramidalization of the glycosidic nitrogen provides the way for efficient cleavage of the N-glycosidic bond of 8-OxoG with the hOGG1 DNA repair protein. Šebera J; Trantírek L; Tanaka Y; Sychrovský V J Phys Chem B; 2012 Oct; 116(41):12535-44. PubMed ID: 22989268 [TBL] [Abstract][Full Text] [Related]
3. Computational clues for a new mechanism in the glycosylase activity of the human DNA repair protein hOGG1. A generalized paradigm for purine-repairing systems? Calvaresi M; Bottoni A; Garavelli M J Phys Chem B; 2007 Jun; 111(23):6557-70. PubMed ID: 17508740 [TBL] [Abstract][Full Text] [Related]
4. Repair activities of human 8-oxoguanine DNA glycosylase are stimulated by the interaction with human checkpoint sensor Rad9-Rad1-Hus1 complex. Park MJ; Park JH; Hahm SH; Ko SI; Lee YR; Chung JH; Sohn SY; Cho Y; Kang LW; Han YS DNA Repair (Amst); 2009 Oct; 8(10):1190-200. PubMed ID: 19615952 [TBL] [Abstract][Full Text] [Related]
5. Product inhibition and magnesium modulate the dual reaction mode of hOgg1. Morland I; Luna L; Gustad E; Seeberg E; Bjørås M DNA Repair (Amst); 2005 Mar; 4(3):381-7. PubMed ID: 15661661 [TBL] [Abstract][Full Text] [Related]
6. Structure of the major oxidative damage 7,8-dihydro-8-oxoguanine presented into a catalytically competent DNA glycosylase. Schmaltz LF; Ceniceros JE; Lee S Biochem J; 2022 Nov; 479(21):2297-2309. PubMed ID: 36268656 [TBL] [Abstract][Full Text] [Related]
7. Step-by-step mechanism of DNA damage recognition by human 8-oxoguanine DNA glycosylase. Kuznetsova AA; Kuznetsov NA; Ishchenko AA; Saparbaev MK; Fedorova OS Biochim Biophys Acta; 2014 Jan; 1840(1):387-95. PubMed ID: 24096108 [TBL] [Abstract][Full Text] [Related]
8. Catalytically Competent Conformation of the Active Site of Human 8-Oxoguanine-DNA Glycosylase. Popov AV; Yudkina AV; Vorobjev YN; Zharkov DO Biochemistry (Mosc); 2020 Feb; 85(2):192-204. PubMed ID: 32093595 [TBL] [Abstract][Full Text] [Related]
9. Thermodynamics of the DNA damage repair steps of human 8-oxoguanine DNA glycosylase. Kuznetsov NA; Kuznetsova AA; Vorobjev YN; Krasnoperov LN; Fedorova OS PLoS One; 2014; 9(6):e98495. PubMed ID: 24911585 [TBL] [Abstract][Full Text] [Related]
10. Catalytic and DNA-binding properties of the human Ogg1 DNA N-glycosylase/AP lyase: biochemical exploration of H270, Q315 and F319, three amino acids of the 8-oxoguanine-binding pocket. van der Kemp PA; Charbonnier JB; Audebert M; Boiteux S Nucleic Acids Res; 2004; 32(2):570-8. PubMed ID: 14752045 [TBL] [Abstract][Full Text] [Related]
12. Enforced presentation of an extrahelical guanine to the lesion recognition pocket of human 8-oxoguanine glycosylase, hOGG1. Crenshaw CM; Nam K; Oo K; Kutchukian PS; Bowman BR; Karplus M; Verdine GL J Biol Chem; 2012 Jul; 287(30):24916-28. PubMed ID: 22511791 [TBL] [Abstract][Full Text] [Related]
13. Structure of a repair enzyme interrogating undamaged DNA elucidates recognition of damaged DNA. Banerjee A; Yang W; Karplus M; Verdine GL Nature; 2005 Mar; 434(7033):612-8. PubMed ID: 15800616 [TBL] [Abstract][Full Text] [Related]
14. Mechanistic and conformational flexibility of the covalent linkage formed during β-lyase activity on an AP-site: application to hOgg1. Kellie JL; Wetmore SD J Phys Chem B; 2012 Sep; 116(35):10786-97. PubMed ID: 22877319 [TBL] [Abstract][Full Text] [Related]
15. Unraveling the Base Excision Repair Mechanism of Human DNA Glycosylase. Sadeghian K; Ochsenfeld C J Am Chem Soc; 2015 Aug; 137(31):9824-31. PubMed ID: 26226322 [TBL] [Abstract][Full Text] [Related]
16. Separation-of-function mutants unravel the dual-reaction mode of human 8-oxoguanine DNA glycosylase. Dalhus B; Forsbring M; Helle IH; Vik ES; Forstrøm RJ; Backe PH; Alseth I; Bjørås M Structure; 2011 Jan; 19(1):117-27. PubMed ID: 21220122 [TBL] [Abstract][Full Text] [Related]
18. Structural Insight into the Discrimination between 8-Oxoguanine Glycosidic Conformers by DNA Repair Enzymes: A Molecular Dynamics Study of Human Oxoguanine Glycosylase 1 and Formamidopyrimidine-DNA Glycosylase. Sowlati-Hashjin S; Wetmore SD Biochemistry; 2018 Feb; 57(7):1144-1154. PubMed ID: 29320630 [TBL] [Abstract][Full Text] [Related]
19. Human OGG1 activity in nucleosomes is facilitated by transient unwrapping of DNA and is influenced by the local histone environment. Bilotti K; Kennedy EE; Li C; Delaney S DNA Repair (Amst); 2017 Nov; 59():1-8. PubMed ID: 28892740 [TBL] [Abstract][Full Text] [Related]
20. Human Oxoguanine Glycosylase 1 Removes Solution Accessible 8-Oxo-7,8-dihydroguanine Lesions from Globally Substituted Nucleosomes Except in the Dyad Region. Bilotti K; Tarantino ME; Delaney S Biochemistry; 2018 Mar; 57(9):1436-1439. PubMed ID: 29341606 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]