These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 2833501)
1. Multidimensional diffusion modes and collision frequencies of cytochrome c with its redox partners. Gupte SS; Hackenbrock CR J Biol Chem; 1988 Apr; 263(11):5241-7. PubMed ID: 2833501 [TBL] [Abstract][Full Text] [Related]
2. The role of cytochrome c diffusion in mitochondrial electron transport. Gupte SS; Hackenbrock CR J Biol Chem; 1988 Apr; 263(11):5248-53. PubMed ID: 2833502 [TBL] [Abstract][Full Text] [Related]
3. Motional dynamics of functional cytochrome c delivered by low pH fusion into the intermembrane space of intact mitochondria. Cortese JD; Hackenbrock CR Biochim Biophys Acta; 1993 Apr; 1142(1-2):194-202. PubMed ID: 8384490 [TBL] [Abstract][Full Text] [Related]
4. Relationship between lateral diffusion, collision frequency, and electron transfer of mitochondrial inner membrane oxidation-reduction components. Gupte S; Wu ES; Hoechli L; Hoechli M; Jacobson K; Sowers AE; Hackenbrock CR Proc Natl Acad Sci U S A; 1984 May; 81(9):2606-10. PubMed ID: 6326133 [TBL] [Abstract][Full Text] [Related]
5. Two-dimensional diffusion of F1F0-ATP synthase and ADP/ATP translocator. Testing a hypothesis for ATP synthesis in the mitochondrial inner membrane. Gupte SS; Chazotte B; Leesnitzer MA; Hackenbrock CR Biochim Biophys Acta; 1991 Nov; 1069(2):131-8. PubMed ID: 1718429 [TBL] [Abstract][Full Text] [Related]
6. Lateral diffusion as a rate-limiting step in ubiquinone-mediated mitochondrial electron transport. Chazotte B; Hackenbrock CR J Biol Chem; 1989 Mar; 264(9):4978-85. PubMed ID: 2925679 [TBL] [Abstract][Full Text] [Related]
7. The multicollisional, obstructed, long-range diffusional nature of mitochondrial electron transport. Chazotte B; Hackenbrock CR J Biol Chem; 1988 Oct; 263(28):14359-67. PubMed ID: 3170548 [TBL] [Abstract][Full Text] [Related]
8. Lateral diffusion of redox components in the mitochondrial inner membrane is unaffected by inner membrane folding and matrix density. Chazotte B; Hackenbrock CR J Biol Chem; 1991 Mar; 266(9):5973-9. PubMed ID: 2005133 [TBL] [Abstract][Full Text] [Related]
9. Ionic strength of the intermembrane space of intact mitochondria as estimated with fluorescein-BSA delivered by low pH fusion. Cortese JD; Voglino AL; Hackenbrock CR J Cell Biol; 1991 Jun; 113(6):1331-40. PubMed ID: 2045415 [TBL] [Abstract][Full Text] [Related]
10. Persistence of cytochrome c binding to membranes at physiological mitochondrial intermembrane space ionic strength. Cortese JD; Voglino AL; Hackenbrock CR Biochim Biophys Acta; 1995 Mar; 1228(2-3):216-228. PubMed ID: 7893728 [TBL] [Abstract][Full Text] [Related]
11. Studies of 8-azido-ATP adducts reveal two mechanisms by which ATP binding to cytochrome c could inhibit respiration. Craig DB; Wallace CJ Biochemistry; 1995 Feb; 34(8):2686-93. PubMed ID: 7873551 [TBL] [Abstract][Full Text] [Related]
12. The random collision model and a critical assessment of diffusion and collision in mitochondrial electron transport. Hackenbrock CR; Chazotte B; Gupte SS J Bioenerg Biomembr; 1986 Oct; 18(5):331-68. PubMed ID: 3021714 [TBL] [Abstract][Full Text] [Related]
13. Interaction of horse heart cytochrome c with lipid bilayer membranes: effects on redox potentials. Salamon Z; Tollin G J Bioenerg Biomembr; 1997 Jun; 29(3):211-21. PubMed ID: 9298706 [TBL] [Abstract][Full Text] [Related]
14. Protein-protein interactions of cytochrome oxidase in inner mitochondrial membranes. The effect of liposome fusion on protein rotational mobility. Kawato S; Lehner C; Müller M; Cherry RJ J Biol Chem; 1982 Jun; 257(11):6470-6. PubMed ID: 6281272 [TBL] [Abstract][Full Text] [Related]
15. [Interaction of cytochrome c with mitochondrial proteins and cybacrone-dextran]. Shol'ts KF; Mamaev DV Biokhimiia; 1985 Nov; 50(11):1877-83. PubMed ID: 2415172 [TBL] [Abstract][Full Text] [Related]
16. Lateral diffusion of ubiquinone during electron transfer in phospholipid- and ubiquinone-enriched mitochondrial membranes. Schneider H; Lemasters JJ; Hackenbrock CR J Biol Chem; 1982 Sep; 257(18):10789-93. PubMed ID: 6286674 [TBL] [Abstract][Full Text] [Related]
17. Mobility in the mitochondrial electron transport chain. Hochman J; Ferguson-Miller S; Schindler M Biochemistry; 1985 May; 24(10):2509-16. PubMed ID: 2990530 [TBL] [Abstract][Full Text] [Related]
18. Control of formation and dissociation of the high-affinity complex between cytochrome c and cytochrome c peroxidase by ionic strength and the low-affinity binding site. Mei H; Wang K; McKee S; Wang X; Waldner JL; Pielak GJ; Durham B; Millett F Biochemistry; 1996 Dec; 35(49):15800-6. PubMed ID: 8961943 [TBL] [Abstract][Full Text] [Related]
19. Surface plasmon resonance studies of complex formation between cytochrome c and bovine cytochrome c oxidase incorporated into a supported planar lipid bilayer. II. Binding of cytochrome c to oxidase-containing cardiolipin/phosphatidylcholine membranes. Salamon Z; Tollin G Biophys J; 1996 Aug; 71(2):858-67. PubMed ID: 8842224 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome c as an electron shuttle between the outer and inner mitochondrial membranes. Bernardi P; Azzone GF J Biol Chem; 1981 Jul; 256(14):7187-92. PubMed ID: 6265441 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]