BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 28335227)

  • 1. Synthesis of Ball-Like Ag Nanorod Aggregates for Surface-Enhanced Raman Scattering and Catalytic Reduction.
    Zhang W; Cai Y; Qian R; Zhao B; Zhu P
    Nanomaterials (Basel); 2016 May; 6(6):. PubMed ID: 28335227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-enhanced Raman scattering activities of carbon nanotubes decorated with silver nanoparticles.
    Zhang X; Zhang J; Quan J; Wang N; Zhu Y
    Analyst; 2016 Oct; 141(19):5527-34. PubMed ID: 27396689
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen treatment-improved uniform deposition of Ag nanoparticles on ZnO nanorod arrays and their visible-light photocatalytic and surface-enhanced Raman scattering properties.
    Lin SL; Hsu KC; Hsu CH; Chen DH
    Nanoscale Res Lett; 2013 Jul; 8(1):325. PubMed ID: 23866904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering.
    Fang H; Zhang CX; Liu L; Zhao YM; Xu HJ
    Biosens Bioelectron; 2015 Feb; 64():434-41. PubMed ID: 25282397
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multifunctional ZnO/Ag nanorod array as highly sensitive substrate for surface enhanced Raman detection.
    Shan G; Zheng S; Chen S; Chen Y; Liu Y
    Colloids Surf B Biointerfaces; 2012 Jun; 94():157-62. PubMed ID: 22341990
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ZnO/graphene/Ag composite as recyclable surface-enhanced Raman scattering substrates.
    Zhang J; Zhang X; Ding Y; Zhu Y
    Appl Opt; 2016 Nov; 55(32):9105-9112. PubMed ID: 27857296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication of silver nanoparticles embedded into polyvinyl alcohol (Ag/PVA) composite nanofibrous films through electrospinning for antibacterial and surface-enhanced Raman scattering (SERS) activities.
    Zhang Z; Wu Y; Wang Z; Zou X; Zhao Y; Sun L
    Mater Sci Eng C Mater Biol Appl; 2016 Dec; 69():462-9. PubMed ID: 27612736
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Green synthesis of large-scale highly ordered core@shell nanoporous Au@Ag nanorod arrays as sensitive and reproducible 3D SERS substrates.
    Chen B; Meng G; Huang Q; Huang Z; Xu Q; Zhu C; Qian Y; Ding Y
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15667-75. PubMed ID: 25162796
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured Ag surface fabricated by femtosecond laser for surface-enhanced Raman scattering.
    Chang HW; Tsai YC; Cheng CW; Lin CY; Lin YW; Wu TM
    J Colloid Interface Sci; 2011 Aug; 360(1):305-8. PubMed ID: 21546031
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Simple strategy to improve surface-enhanced Raman scattering based on electrochemically prepared roughened silver substrates.
    Yang KH; Liu YC; Yu CC
    Langmuir; 2010 Jul; 26(13):11512-7. PubMed ID: 20524629
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A facile strategy for obtaining fresh Ag as SERS active substrates.
    Gan Z; Zhao A; Zhang M; Wang D; Tao W; Guo H; Li D; Li M; Gao Q
    J Colloid Interface Sci; 2012 Jan; 366(1):23-27. PubMed ID: 21999955
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of uniform Ag nanosponges and its SERS application.
    Huang Q; Wei W; Wang L; Chen H; Li T; Zhu X; Wu Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Aug; 201():300-305. PubMed ID: 29763823
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bimetallic Ag-Cu Alloy Microflowers as SERS Substrates with Single-Molecule Detection Limit.
    Kaja S; Nag A
    Langmuir; 2021 Nov; 37(44):13027-13037. PubMed ID: 34699226
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved galvanic replacement growth of Ag microstructures on Cu micro-grid for enhanced SERS detection of organic molecules.
    Guo TL; Li JG; Sun X; Sakka Y
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():97-104. PubMed ID: 26838829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remarkable SERS Detection by Hybrid Cu
    Sheng S; Ren Y; Yang S; Wang Q; Sheng P; Zhang X; Liu Y
    ACS Omega; 2020 Jul; 5(28):17703-17714. PubMed ID: 32715257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tailoring Size and Coverage Density of Silver Nanoparticles on Monodispersed Polymer Spheres as Highly Sensitive SERS Substrates.
    Hu Y; Zhao T; Zhu P; Zhu Y; Liang X; Sun R; Wong CP
    Chem Asian J; 2016 Sep; 11(17):2428-35. PubMed ID: 27511618
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis of Hollow BiVO
    Chen L; Yu Y; Wu M; Huang J; Liu Y; Liu X; Qiu G
    Chempluschem; 2015 May; 80(5):871-877. PubMed ID: 31973332
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Novel Ag/Au/Pt trimetallic nanocages used with surface-enhanced Raman scattering for trace fluorescent dye detection.
    Bich Quyen TT; Su WN; Chen CH; Rick J; Liu JY; Hwang BJ
    J Mater Chem B; 2014 Sep; 2(34):5550-5557. PubMed ID: 32262188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling surface morphology and sensitivity of granular and porous silver films for surface-enhanced Raman scattering, SERS.
    Okeil S; Schneider JJ
    Beilstein J Nanotechnol; 2018; 9():2813-2831. PubMed ID: 30498654
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast synthesis of nanoporous Cu/Ag bimetallic triangular nanoprisms
    Liu Q; Lyu X; Chen Q; Qin Y; Wang X; Li C; Fang Z; Bao H
    Nanoscale; 2024 Mar; 16(11):5546-5550. PubMed ID: 38440800
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.