BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 28335293)

  • 1. Cholesterol-Modified Amino-Pullulan Nanoparticles as a Drug Carrier: Comparative Study of Cholesterol-Modified Carboxyethyl Pullulan and Pullulan Nanoparticles.
    Tao X; Xie Y; Zhang Q; Qiu X; Yuan L; Wen Y; Li M; Yang X; Tao T; Xie M; Lv Y; Wang Q; Feng X
    Nanomaterials (Basel); 2016 Sep; 6(9):. PubMed ID: 28335293
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Particle Hydrophobicity, Surface Charge, Media pH Value and Complexation with Human Serum Albumin on Drug Release Behavior of Mitoxantrone-Loaded Pullulan Nanoparticles.
    Tao X; Jin S; Wu D; Ling K; Yuan L; Lin P; Xie Y; Yang X
    Nanomaterials (Basel); 2015 Dec; 6(1):. PubMed ID: 28344259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pullulan-Based Nanoparticle-HSA Complex Formation and Drug Release Influenced by Surface Charge.
    Yuan L; Cao Y; Luo Q; Yang W; Wu X; Yang X; Wu D; Tan S; Qin G; Zhou J; Zeng Y; Chen X; Tao X; Zhang Q
    Nanoscale Res Lett; 2018 Oct; 13(1):317. PubMed ID: 30306404
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pullulan nanoparticle surface charges on HSA complexation and drug release behavior of HSA-bound nanoparticles.
    Tao X; Zhang Q; Ling K; Chen Y; Yang W; Gao F; Shi G
    PLoS One; 2012; 7(11):e49304. PubMed ID: 23166632
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel Delivery of Mitoxantrone with Hydrophobically Modified Pullulan Nanoparticles to Inhibit Bladder Cancer Cell and the Effect of Nano-drug Size on Inhibition Efficiency.
    Tao X; Tao T; Wen Y; Yi J; He L; Huang Z; Nie Y; Yao X; Wang Y; He C; Yang X
    Nanoscale Res Lett; 2018 Oct; 13(1):345. PubMed ID: 30377872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis and characterization of biotin modified cholesteryl pullulan as a novel anticancer drug carrier.
    Yang W; Wang M; Ma L; Li H; Huang L
    Carbohydr Polym; 2014 Jan; 99():720-7. PubMed ID: 24274563
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Study of Hydrophobically Modified Pullulan Nanoparticles with Different Hydrophobic Densities on the Effect of Anti-Colon Cancer Cell Efficiency.
    Zhang Y; Jiang Q; Liu X; Peng L; Tang X; Li L; Ling X; Yang X; He C; Tao X; Hou D
    J Biomed Nanotechnol; 2021 Oct; 17(10):1972-1983. PubMed ID: 34706797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistically Enhanced Inhibitory Effects of Pullulan Nanoparticle-Mediated Co-Delivery of Lovastatin and Doxorubicin to Triple-Negative Breast Cancer Cells.
    Wu D; Chen Y; Wen S; Wen Y; Wang R; Zhang Q; Qin G; Yi H; Wu M; Lu L; Tao X; Deng X
    Nanoscale Res Lett; 2019 Sep; 14(1):314. PubMed ID: 31520223
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of folate-modified pullulan acetate nanoparticles for tumor-targeted drug delivery.
    Zhang HZ; Li XM; Gao FP; Liu LR; Zhou ZM; Zhang QQ
    Drug Deliv; 2010 Jan; 17(1):48-57. PubMed ID: 22747075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of the PEG Density in the PEGylated Chitosan Nanoparticles as a Drug Carrier for Curcumin and Mitoxantrone.
    Chen Y; Wu D; Zhong W; Kuang S; Luo Q; Song L; He L; Feng X; Tao X
    Nanomaterials (Basel); 2018 Jul; 8(7):. PubMed ID: 29966380
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modified methods of nanoparticles synthesis in pH-sensitive nano-carriers production for doxorubicin delivery on MCF-7 breast cancer cell line.
    Hamidu A; Mokrish A; Mansor R; Razak ISA; Danmaigoro A; Jaji AZ; Bakar ZA
    Int J Nanomedicine; 2019; 14():3615-3627. PubMed ID: 31190815
    [No Abstract]   [Full Text] [Related]  

  • 12. Cellular uptake mechanism and intracellular fate of hydrophobically modified pullulan nanoparticles.
    Jiang L; Li X; Liu L; Zhang Q
    Int J Nanomedicine; 2013; 8():1825-34. PubMed ID: 23674894
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of genistein-loaded biodegradable TPGS-b-PCL nanoparticles for improved therapeutic effects in cervical cancer cells.
    Zhang H; Liu G; Zeng X; Wu Y; Yang C; Mei L; Wang Z; Huang L
    Int J Nanomedicine; 2015; 10():2461-73. PubMed ID: 25848264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pullulan derivative with cationic and hydrophobic moieties as an appropriate macromolecule in the synthesis of nanoparticles for drug delivery.
    Constantin M; Bucatariu S; Sacarescu L; Daraba OM; Anghelache M; Fundueanu G
    Int J Biol Macromol; 2020 Dec; 164():4487-4498. PubMed ID: 32946935
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced Entrapment and Improved in Vitro Controlled Release of N-Acetyl Cysteine in Hybrid PLGA/Lecithin Nanoparticles Prepared Using a Nanoprecipitation/Self-Assembly Method.
    Ahmaditabar P; Momtazi-Borojeni AA; Rezayan AH; Mahmoodi M; Sahebkar A; Mellat M
    J Cell Biochem; 2017 Dec; 118(12):4203-4209. PubMed ID: 28419535
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anthracycline Drugs on Modified Surface of Quercetin-Loaded Polymer Nanoparticles: A Dual Drug Delivery Model for Cancer Treatment.
    Saha C; Kaushik A; Das A; Pal S; Majumder D
    PLoS One; 2016; 11(5):e0155710. PubMed ID: 27196562
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-Assembled Benznidazole-Loaded Cationic Nanoparticles Containing Cholesterol/Sialic Acid: Physicochemical Properties, In Vitro Drug Release and In Vitro Anticancer Efficacy.
    Dos Santos-Silva AM; de Caland LB; do Nascimento EG; Oliveira ALCSL; de Araújo-Júnior RF; Cornélio AM; Fernandes-Pedrosa MF; da Silva-Júnior AA
    Int J Mol Sci; 2019 May; 20(9):. PubMed ID: 31083590
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles.
    Zhang Z; Feng SS
    Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intermolecular interactions between salmon calcitonin, hyaluronate, and chitosan and their impact on the process of formation and properties of peptide-loaded nanoparticles.
    Umerska A; Corrigan OI; Tajber L
    Int J Pharm; 2014 Dec; 477(1-2):102-12. PubMed ID: 25447822
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapamycin-loaded nanoparticles for inhibition of neointimal hyperplasia in experimental vein grafts.
    Zou J; Zhang X; Yang H; Zhu Y; Ma H; Wang S
    Ann Vasc Surg; 2011 May; 25(4):538-46. PubMed ID: 21549923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.