BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

416 related articles for article (PubMed ID: 28335790)

  • 1. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review.
    Suriyanto ; Ng EY; Kumar SD
    Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy.
    Shaterabadi Z; Nabiyouni G; Soleymani M
    Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment.
    Bagaria HG; Johnson DT
    Int J Hyperthermia; 2005 Feb; 21(1):57-75. PubMed ID: 15764351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A study on DPL model of heat transfer in bi-layer tissues during MFH treatment.
    Kumar D; Kumar P; Rai KN
    Comput Biol Med; 2016 Aug; 75():160-72. PubMed ID: 27289539
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning.
    Miaskowski A; Subramanian M
    Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31546809
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges.
    Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH
    J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method.
    Lahonian M; Golneshan AA
    IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model.
    Le TA; Hadadian Y; Yoon J
    Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia.
    Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R
    Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancer hyperthermia using magnetic nanoparticles.
    Kobayashi T
    Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy.
    Dutz S; Hergt R
    Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia.
    Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A
    Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of different heat transfer models on therapeutic temperature prediction and heat-induced damage during magnetic hyperthermia.
    Tang Y; Wang Y; Flesch RCC; Jin T
    J Therm Biol; 2023 Dec; 118():103747. PubMed ID: 38000145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe
    Suleman M; Riaz S
    J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging.
    Behrends A; Wei H; Neumann A; Friedrich T; Bakenecker AC; Franke J; Sajjamark K; Buchholz O; Bär S; Hofmann UG; Graeser M; Buzug TM
    Nanotheranostics; 2024; 8(2):163-178. PubMed ID: 38444740
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method.
    Golneshan AA; Lahonian M
    Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia.
    Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J
    Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687
    [No Abstract]   [Full Text] [Related]  

  • 18. Bacterially synthesized ferrite nanoparticles for magnetic hyperthermia applications.
    Céspedes E; Byrne JM; Farrow N; Moise S; Coker VS; Bencsik M; Lloyd JR; Telling ND
    Nanoscale; 2014 Nov; 6(21):12958-70. PubMed ID: 25232657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-sorted anionic iron oxide nanomagnets as colloidal mediators for magnetic hyperthermia.
    Fortin JP; Wilhelm C; Servais J; Ménager C; Bacri JC; Gazeau F
    J Am Chem Soc; 2007 Mar; 129(9):2628-35. PubMed ID: 17266310
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fundamental solutions to the bioheat equation and their application to magnetic fluid hyperthermia.
    Giordano MA; Gutierrez G; Rinaldi C
    Int J Hyperthermia; 2010; 26(5):475-84. PubMed ID: 20578812
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.