These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
420 related articles for article (PubMed ID: 28335790)
1. Physical mechanism and modeling of heat generation and transfer in magnetic fluid hyperthermia through Néelian and Brownian relaxation: a review. Suriyanto ; Ng EY; Kumar SD Biomed Eng Online; 2017 Mar; 16(1):36. PubMed ID: 28335790 [TBL] [Abstract][Full Text] [Related]
2. Physics responsible for heating efficiency and self-controlled temperature rise of magnetic nanoparticles in magnetic hyperthermia therapy. Shaterabadi Z; Nabiyouni G; Soleymani M Prog Biophys Mol Biol; 2018 Mar; 133():9-19. PubMed ID: 28993133 [TBL] [Abstract][Full Text] [Related]
3. Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment. Bagaria HG; Johnson DT Int J Hyperthermia; 2005 Feb; 21(1):57-75. PubMed ID: 15764351 [TBL] [Abstract][Full Text] [Related]
4. A study on DPL model of heat transfer in bi-layer tissues during MFH treatment. Kumar D; Kumar P; Rai KN Comput Biol Med; 2016 Aug; 75():160-72. PubMed ID: 27289539 [TBL] [Abstract][Full Text] [Related]
5. Numerical Model for Magnetic Fluid Hyperthermia in a Realistic Breast Phantom: Calorimetric Calibration and Treatment Planning. Miaskowski A; Subramanian M Int J Mol Sci; 2019 Sep; 20(18):. PubMed ID: 31546809 [TBL] [Abstract][Full Text] [Related]
6. A review on numerical modeling for magnetic nanoparticle hyperthermia: Progress and challenges. Raouf I; Khalid S; Khan A; Lee J; Kim HS; Kim MH J Therm Biol; 2020 Jul; 91():102644. PubMed ID: 32716885 [TBL] [Abstract][Full Text] [Related]
7. Numerical study of temperature distribution in a spherical tissue in magnetic fluid hyperthermia using lattice Boltzmann method. Lahonian M; Golneshan AA IEEE Trans Nanobioscience; 2011 Dec; 10(4):262-8. PubMed ID: 22271797 [TBL] [Abstract][Full Text] [Related]
8. A prediction model for magnetic particle imaging-based magnetic hyperthermia applied to a brain tumor model. Le TA; Hadadian Y; Yoon J Comput Methods Programs Biomed; 2023 Jun; 235():107546. PubMed ID: 37068450 [TBL] [Abstract][Full Text] [Related]
9. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Kandala SK; Liapi E; Whitcomb LL; Attaluri A; Ivkov R Int J Hyperthermia; 2019; 36(1):115-129. PubMed ID: 30541354 [TBL] [Abstract][Full Text] [Related]
10. Cancer hyperthermia using magnetic nanoparticles. Kobayashi T Biotechnol J; 2011 Nov; 6(11):1342-7. PubMed ID: 22069094 [TBL] [Abstract][Full Text] [Related]
11. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Dutz S; Hergt R Int J Hyperthermia; 2013 Dec; 29(8):790-800. PubMed ID: 23968194 [TBL] [Abstract][Full Text] [Related]
12. In silico evaluation of adverse eddy current effects in preclinical tests of magnetic hyperthermia. Vicentini M; Vassallo M; Ferrero R; Androulakis I; Manzin A Comput Methods Programs Biomed; 2022 Aug; 223():106975. PubMed ID: 35792363 [TBL] [Abstract][Full Text] [Related]
13. Influence of different heat transfer models on therapeutic temperature prediction and heat-induced damage during magnetic hyperthermia. Tang Y; Wang Y; Flesch RCC; Jin T J Therm Biol; 2023 Dec; 118():103747. PubMed ID: 38000145 [TBL] [Abstract][Full Text] [Related]
14. 3D in silico study of magnetic fluid hyperthermia of breast tumor using Fe Suleman M; Riaz S J Therm Biol; 2020 Jul; 91():102635. PubMed ID: 32716877 [TBL] [Abstract][Full Text] [Related]
15. Integrable Magnetic Fluid Hyperthermia Systems for 3D Magnetic Particle Imaging. Behrends A; Wei H; Neumann A; Friedrich T; Bakenecker AC; Franke J; Sajjamark K; Buchholz O; Bär S; Hofmann UG; Graeser M; Buzug TM Nanotheranostics; 2024; 8(2):163-178. PubMed ID: 38444740 [No Abstract] [Full Text] [Related]
16. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Golneshan AA; Lahonian M Int J Hyperthermia; 2011; 27(3):266-74. PubMed ID: 21501028 [TBL] [Abstract][Full Text] [Related]
17. Evaluation of magnetic nanoparticles for magnetic fluid hyperthermia. Lanier OL; Korotych OI; Monsalve AG; Wable D; Savliwala S; Grooms NWF; Nacea C; Tuitt OR; Dobson J Int J Hyperthermia; 2019; 36(1):687-701. PubMed ID: 31340687 [No Abstract] [Full Text] [Related]
18. Cytotoxic evaluation of pure and doped iron oxide nanoparticles on cancer cells: a magnetic fluid hyperthermia perspective. Bhadla D; Parekh K; Jain N Nanotoxicology; 2024 Aug; 18(5):464-478. PubMed ID: 39091195 [TBL] [Abstract][Full Text] [Related]